题目描述
输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树。假设输入的前序遍历和中序遍历的结果中都不含重复的数字。例如输入前序遍历序列{1,2,4,7,3,5,6,8}和中序遍历序列{4,7,2,1,5,3,8,6},则重建二叉树并返回。
解题思路
知道前序和中序遍历的结果是可以唯一确定一颗二叉树的,但是知道前序和后序遍历是不可以唯一确定一颗二叉树的。
在二叉树的前序遍历中第一个数字为根节点的值,在中序遍历中,根节点的值位于序列中间,根节点左边为左子树,右边为右子树。
第一层:如上,根节点值为1,其中4,7,2为左子树,5,3,8,6为右子树。
第二层:前序遍历为2,4,7,因此左子树中2为根节点值,中序遍历为4,7,2,所以4,7为根节点2的左子树;同理右边,3为根节点,5为左子树,8,6为右子树,以此类推,最终得出整个二叉树。
/**
* Definition for binary tree
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
TreeNode* reConstructBinaryTree(vector<int> pre,vector<int> vin) {
if (pre.size() == 0)
return NULL;
TreeNode *root = dfs(pre, vin, 0, pre.size(), 0, vin.size());
return root;
}
TreeNode *dfs(vector<int> &pre,vector<int> &vin, int p_l, int p_r, int v_l, int v_r) {
if (p_l == p_r)
return NULL;
TreeNode *root = new TreeNode(pre[p_l]);
int pos = -1;
for (int i = v_l; i < v_r; i++)
if (vin[i] == pre[p_l]) {
pos = i;
break;
}
root->left = dfs(pre, vin, p_l + 1, p_l + 1 + pos - v_l, v_l, pos);
root->right = dfs(pre, vin, p_l + 1 + pos - v_l, p_r, pos + 1, v_r);
return root;
}
};
题目描述
用两个栈来实现一个队列,完成队列的Push和Pop操作。 队列中的元素为int类型。
解题思路
用两个栈,一个用来压入Push,一个用来弹出Pop。
class Solution
{
public:
void push(int node) {
stack1.push(node);
}
int pop() {
if (stack2.empty()) {
while (!stack1.empty())
stack2.push(stack1.top()), stack1.pop();
}
int ret = stack2.top();
stack2.pop();
return ret;
}
private:
stack<int> stack1;
stack<int> stack2;
};
同理可用两个队列实现一个栈。
题目描述
把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转。 输入一个非减排序的数组的一个旋转,输出旋转数组的最小元素。 例如数组{3,4,5,1,2}为{1,2,3,4,5}的一个旋转,该数组的最小值为1。 NOTE:给出的所有元素都大于0,若数组大小为0,请返回0。
解题思路
输入数组是“非递减”的,有两种情况:
1.严格递增时,当原数组是严格递增的,它的一个旋转就可以认为是两个递增子数组组成,并且我们可以观察到旋转后数组第一个元素大于等于最后一个元素,我们要找的最小元素刚好在这个两个数组的分界线。
因此,我们用两个指针P1,P2分别指向数组第一个和最后一个元素,然后我们找到中间元素。
如果中间元素比第一个元素大,说明中间元素位于第一个递增数组,最小的元素位于该中间元素后面,此时移动P1指向该中间元素,缩小查找范围。
如果中间元素比最后一个元素小,说明中间元素位于第二个递增数组,最小的元素在中间元素前面,此时移动P2指向中间元素,同样缩小一半的查找范围。
最后的形式P1,P2将会指向两个相邻的元素,而第二个指针刚好指向最小元素。
2.再来考虑非递减这个条件,当第一个,最后一个,以及中间元素均相等的时候,是一个非递减数组,此时我们无法判断最小元素位置,采取顺序查找法。
时间复杂度最大为O(n),最小为O(log n)。
class Solution {
public:
int minNumberInRotateArray(vector<int> rotateArray) {
if (rotateArray.size() == 0)
return 0;
int l = 0, r = rotateArray.size() - 1;
while (l < r && rotateArray[l] >= rotateArray[r]) {
int mid = (l + r) / 2;
if (rotateArray[l] == rotateArray[r] && rotateArray[l] == rotateArray[mid]) {
int ret = rotateArray[l];
for (int i = l + 1; i <= r; ret = min(ret, rotateArray[i++]));
return ret;
}
if (rotateArray[mid] >= rotateArray[l])
l = mid + 1;
else
r = mid;
}
return rotateArray[l];
}
};