2024-92024年桂城集训队选拔(五年级)

//关注后即可查看答案(答案在下期文案里)

#A. 小丸子

题目描述

丹丹有一个电烤箱,她想用电烤箱来做小丸子。已知电烤箱每次最多可以做k颗小丸子,每次需要用时T分钟,那么制作n颗小丸子需要多长时间呢?

输入描述

一行三个正整数n,k,T。

输出描述

输出完成制作n颗小丸子所需要的时间。

输入样例
50 25 10

Copy

输出样例
20

Copy

样例解释

电烤箱每次可以做25颗小丸子,50颗需要做2次,每次需要10分钟,共计需要20分钟。

数据范围

1≤N,X,T≤1000

#B. 买水彩笔

题目描述

需要要举行绘画比赛,现在需要n支水彩笔。小商店的水彩笔不零售,只按捆销售,有两种规格,其中一种为100支一捆,价格为a元,另一种为10支一捆,价格为b元,请问为了保证活动的正常进行,至少需要花多少钱购买水彩笔?

输入描述

三个正整数n、a、b,其中n、a、b的值不大于10000。

输出描述

输出购买水彩笔的最少花费。

输入样例
  101 80 9

Copy

输出样例
  89

Copy

#C. 学习除法

题目描述

​ 鸡尾酒的学生丹丹学不会除法,有一天他遇到了这样的一个问题:给定一个整数 n,你可以任选一个 n 的因子 x,然后将 n 除以 x。你可以进行任意次这样的 操作,直到 n 是一个质数为止。请问至少几次操作可以让 n 变成一个质数。

​ 由于丹丹不会除法,更不知道因子是什么意思,所以他将这个问题交给你了,请 你帮他解决这个问题。

​ 例如:原数字 n = 8,选择 8 的因子 2,将 8 除以 2,此时 n = 4。然后再选 择 4 的因子 2,将 4 除以 2,得到 n = 2。此时 n 是一个质数。(这样的操作 方案不一定是最优的,因为本题在求最少的操作次数)

输入格式

输入仅一行一个整数 n。

输出格式

输出一行一个答案。

样例1 输入

​8

Copy

样例1 输出

​1

Copy

样例1 说明

​ 选择 8 的因子 4,将 8 除以 4,得到 2 ,2 是质数,共用了一次操作。

样例2 输入

​5

Copy

样例2 输出

​0

Copy

样例2 说明

​ 5 已经是质数了,所以不需要进行任何操作就可以将其变为质数,输出 0。

数据范围

对于 80% 的数据,有 2 ≤ n ≤ 106

对于 100% 的数据,有 2 ≤ n ≤ 1010

#D. 放球

题目描述

丹丹有一个空袋子,她可以做以下几种操作:

(1)1 x:表示把一个写有整数x的球放入袋子中。

(2)2 x;表示从袋子中取出一个写有整数x的球并丢弃。保证此时袋中存在写有整数x的球

(3)3;输出袋子中球上所写的不同整数的个数。

输入格式:

第一行,一个整数Q,表示有Q次操作。

接下来Q行,每行分别是描述中3种操作中的一种。

输出格式:

对于每一次关于“3”的询问,输出对应的值。

输入样例1:

8
1 3
1 1
1 4
3
2 1
3
1 5
3

Copy

输出样例1:

3
2
3

Copy

输入样例2:

8
1 2
1 2
3
2 2
1 4
1 4
2 2
3

Copy

输出样例2:

1
1

Copy

数据范围:

1<=Q<=10^5 1<=x<=10^6

#E. 硬币

题目描述

小 B 面前的桌子上有 n 个硬币,0 表示正面,1 表示反面,只有当这 n 个硬币都是 0 朝上的时候这个他才能把这些钱收起来。现在他以一个这样的操作来翻硬币,他选择一个 x,把 x-1、x、 x+1 位置上的硬币都翻面(若x为1,则只有1,2翻面;若x为n,则只有n-1和n翻面),他现在想知道最少需要多少次操作能使所有硬币正面朝上。 如果不能使所有硬币翻面,则输出-1。

输入描述

第一行一个整数n,表示硬币数量 第二行 n 个整数,每个数字均为 0 或者 1

输出描述

输出最小操作次数

输入样例
5
0 0 1 0 0

Copy

输出样例
2

Copy

样例解释

先翻转第5枚硬币,此时正反面情况为: 0 0 1 1 1,再翻转第4枚硬币,变为0 0 0 0 0。

数据范围

对于 30% 的数据, 1≤n≤20

对于另外 20%的数据, 全部数字相等

对于 100%的数据, 1≤n≤10 ^6

题目描述

如果一个数的位数是偶数,且其前半部分和后半部分的数关于最中间的位置成轴对称,则我们称这个数为镜面数。为了便于理解,我们假定1个数为6位数,则若其为镜面数,则其可以写成a1a2a3a3a2a1的形式。因此像11、22、345543、12344321、11222211等均为镜面数,而12321、1234321、141等均不是镜面数,因为他们的位数是奇数。12345、123312、132321等也不是镜面数,因为他们不关于最中间的位置成轴对称。现给两个数a,b(a<=b),请你告诉我a~b这个区间内(包含a和b),共有多少个数为镜面数。

输入描述

一行,两个正整数a和b。

输出描述

一个正整数,为镜面数的数量。

输入样例
1 100

Copy

输出样例
9

Copy

数据范围

60%的数据,1<a<=b<=10^7 100%的数据,1<a<=b<=10^9

#G. 拆分

题目描述

​ 鸡尾酒又带着大家学习新定义啦! 今天要学习的内容是集合的 mex ,集合的 mex 指的 是 一 个 集合没 有 出现过 的 最小自 然 数。例 如 , mex({1,2}) = 0 、mex({0,1,2,3}) = 4。

现在你有一个包含 n 个元素的集合,你可以将它分成任意个数量的新集合,使 得所有新集合的 mex 值之和最大,求这个最大值是多少。

输入格式

​ 第一行输入一行一个正整数 n ,接下来一行包含 n 个非负整数,表示集合中的 元素 ai。

输出格式

​ 输出一行一个整数表示答案。

样例1 输入

5
0 0 1 1 2

Copy

样例1 输出

 5

Copy

样例1 说明

​ 分成两个集合 {0, 1}, {0, 1, 2}, 第一个集合的 mex 为 2,第二个集合的 mex 为 3 ,两个集合的 mex 之和为 5 ,这样分集合是最大的。当然也可以分成 {0}, {0}, {1}, {1}, {2},但是这样五个集合的 mex 之和为1 + 1 + 0 + 0 + 0 = 2。

样例2 输入

 5
 1 2 3 4 5

Copy

样例2 输入

 0

Copy

样例2说明

​ 因为原集合没有 0,所以无论怎么分集合,每一个新集合都不会有 0,所以每一 个集合的 mex 都为 0,答案一定为 0。

附件样例

测试样例输入 mex

测试样例输入 mex

数据范围

本题共有 10 个测试点 第一个测试点有 0 < ai 第二个测试点有 ai = 0

第 3 − 4 个测试点有 0 ≤ ai ≤ 1

对于所有测试点,有 1 ≤ n ≤ 105, 0 ≤ ai ≤ 1000

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值