//关注后即可查看答案(答案在下期文案里)
#A. 小丸子
题目描述
丹丹有一个电烤箱,她想用电烤箱来做小丸子。已知电烤箱每次最多可以做k颗小丸子,每次需要用时T分钟,那么制作n颗小丸子需要多长时间呢?
输入描述
一行三个正整数n,k,T。
输出描述
输出完成制作n颗小丸子所需要的时间。
输入样例
50 25 10
Copy
输出样例
20
Copy
样例解释
电烤箱每次可以做25颗小丸子,50颗需要做2次,每次需要10分钟,共计需要20分钟。
数据范围
1≤N,X,T≤1000
#B. 买水彩笔
题目描述
需要要举行绘画比赛,现在需要n支水彩笔。小商店的水彩笔不零售,只按捆销售,有两种规格,其中一种为100支一捆,价格为a元,另一种为10支一捆,价格为b元,请问为了保证活动的正常进行,至少需要花多少钱购买水彩笔?
输入描述
三个正整数n、a、b,其中n、a、b的值不大于10000。
输出描述
输出购买水彩笔的最少花费。
输入样例
101 80 9
Copy
输出样例
89
Copy
#C. 学习除法
题目描述
鸡尾酒的学生丹丹学不会除法,有一天他遇到了这样的一个问题:给定一个整数 n,你可以任选一个 n 的因子 x,然后将 n 除以 x。你可以进行任意次这样的 操作,直到 n 是一个质数为止。请问至少几次操作可以让 n 变成一个质数。
由于丹丹不会除法,更不知道因子是什么意思,所以他将这个问题交给你了,请 你帮他解决这个问题。
例如:原数字 n = 8,选择 8 的因子 2,将 8 除以 2,此时 n = 4。然后再选 择 4 的因子 2,将 4 除以 2,得到 n = 2。此时 n 是一个质数。(这样的操作 方案不一定是最优的,因为本题在求最少的操作次数)
输入格式
输入仅一行一个整数 n。
输出格式
输出一行一个答案。
样例1 输入
8
Copy
样例1 输出
1
Copy
样例1 说明
选择 8 的因子 4,将 8 除以 4,得到 2 ,2 是质数,共用了一次操作。
样例2 输入
5
Copy
样例2 输出
0
Copy
样例2 说明
5 已经是质数了,所以不需要进行任何操作就可以将其变为质数,输出 0。
数据范围
对于 80% 的数据,有 2 ≤ n ≤ 106
对于 100% 的数据,有 2 ≤ n ≤ 1010
#D. 放球
题目描述
丹丹有一个空袋子,她可以做以下几种操作:
(1)1 x:表示把一个写有整数x的球放入袋子中。
(2)2 x;表示从袋子中取出一个写有整数x的球并丢弃。保证此时袋中存在写有整数x的球
(3)3;输出袋子中球上所写的不同整数的个数。
输入格式:
第一行,一个整数Q,表示有Q次操作。
接下来Q行,每行分别是描述中3种操作中的一种。
输出格式:
对于每一次关于“3”的询问,输出对应的值。
输入样例1:
8
1 3
1 1
1 4
3
2 1
3
1 5
3
Copy
输出样例1:
3
2
3
Copy
输入样例2:
8
1 2
1 2
3
2 2
1 4
1 4
2 2
3
Copy
输出样例2:
1
1
Copy
数据范围:
1<=Q<=10^5 1<=x<=10^6
#E. 硬币
题目描述
小 B 面前的桌子上有 n 个硬币,0 表示正面,1 表示反面,只有当这 n 个硬币都是 0 朝上的时候这个他才能把这些钱收起来。现在他以一个这样的操作来翻硬币,他选择一个 x,把 x-1、x、 x+1 位置上的硬币都翻面(若x为1,则只有1,2翻面;若x为n,则只有n-1和n翻面),他现在想知道最少需要多少次操作能使所有硬币正面朝上。 如果不能使所有硬币翻面,则输出-1。
输入描述
第一行一个整数n,表示硬币数量 第二行 n 个整数,每个数字均为 0 或者 1
输出描述
输出最小操作次数
输入样例
5
0 0 1 0 0
Copy
输出样例
2
Copy
样例解释
先翻转第5枚硬币,此时正反面情况为: 0 0 1 1 1,再翻转第4枚硬币,变为0 0 0 0 0。
数据范围
对于 30% 的数据, 1≤n≤20
对于另外 20%的数据, 全部数字相等
对于 100%的数据, 1≤n≤10 ^6
题目描述
如果一个数的位数是偶数,且其前半部分和后半部分的数关于最中间的位置成轴对称,则我们称这个数为镜面数。为了便于理解,我们假定1个数为6位数,则若其为镜面数,则其可以写成a1a2a3a3a2a1的形式。因此像11、22、345543、12344321、11222211等均为镜面数,而12321、1234321、141等均不是镜面数,因为他们的位数是奇数。12345、123312、132321等也不是镜面数,因为他们不关于最中间的位置成轴对称。现给两个数a,b(a<=b),请你告诉我a~b这个区间内(包含a和b),共有多少个数为镜面数。
输入描述
一行,两个正整数a和b。
输出描述
一个正整数,为镜面数的数量。
输入样例
1 100
Copy
输出样例
9
Copy
数据范围
60%的数据,1<a<=b<=10^7 100%的数据,1<a<=b<=10^9
#G. 拆分
题目描述
鸡尾酒又带着大家学习新定义啦! 今天要学习的内容是集合的 mex ,集合的 mex 指的 是 一 个 集合没 有 出现过 的 最小自 然 数。例 如 , mex({1,2}) = 0 、mex({0,1,2,3}) = 4。
现在你有一个包含 n 个元素的集合,你可以将它分成任意个数量的新集合,使 得所有新集合的 mex 值之和最大,求这个最大值是多少。
输入格式
第一行输入一行一个正整数 n ,接下来一行包含 n 个非负整数,表示集合中的 元素 ai。
输出格式
输出一行一个整数表示答案。
样例1 输入
5
0 0 1 1 2
Copy
样例1 输出
5
Copy
样例1 说明
分成两个集合 {0, 1}, {0, 1, 2}, 第一个集合的 mex 为 2,第二个集合的 mex 为 3 ,两个集合的 mex 之和为 5 ,这样分集合是最大的。当然也可以分成 {0}, {0}, {1}, {1}, {2},但是这样五个集合的 mex 之和为1 + 1 + 0 + 0 + 0 = 2。
样例2 输入
5
1 2 3 4 5
Copy
样例2 输入
0
Copy
样例2说明
因为原集合没有 0,所以无论怎么分集合,每一个新集合都不会有 0,所以每一 个集合的 mex 都为 0,答案一定为 0。
附件样例
测试样例输入 mex
测试样例输入 mex
数据范围
本题共有 10 个测试点 第一个测试点有 0 < ai 第二个测试点有 ai = 0
第 3 − 4 个测试点有 0 ≤ ai ≤ 1
对于所有测试点,有 1 ≤ n ≤ 105, 0 ≤ ai ≤ 1000