连续子数组的最大和

面试题42连续子数组的最大和

题目描述
HZ偶尔会拿些专业问题来忽悠那些非计算机专业的同学。今天测试组开完会后,他又发话了:在古老的一维模式识别中,常常需要计算连续子向量的最大和,当向量全为正数的时候,问题很好解决。但是,如果向量中包含负数,是否应该包含某个负数,并期望旁边的正数会弥补它呢?例如:{6,-3,-2,7,-15,1,2,2},连续子向量的最大和为8(从第0个开始,到第3个为止)。给一个数组,返回它的最大连续子序列的和,你会不会被他忽悠住?(子向量的长度至少是1)

思路:
用动态规划可以很好解决问题,维护一个dp数组,可以每个值都存到目前为止最大的和,如果前面的和为负数,则dp[i]=array[i];如果前面的和为正数,dp[i]=d[i-1]+array[i];
最终的dp公式为:

d p [ i ] = { d p [ i ] i=0||dp[i]<0 d p [ i − 1 ] + a r r a y [ i ] dp[i]>=0 dp[i]= \begin{cases} dp[i]& \text{i=0||dp[i]<0}\\ dp[i-1]+array[i]& \text{dp[i]>=0} \end{cases} dp[i]={dp[i]dp[i1]+array[i]i=0||dp[i]<0dp[i]>=0

package 优化时间和空间效率;

public class 面试题42连续子数组的最大和 {

    public static class Solution {
        public int FindGreatestSumOfSubArray(int[] array) {
            int len = array.length;
            int dp[] = new int[len];
            for(int i =0;i<len;i++){
                dp[i]=0;
            }
            dp[0]=array[0];
            for(int i=1;i<len;i++){
                if(dp[i-1]>=0){
                    dp[i]=dp[i-1]+array[i];
                }else{
                    dp[i]=array[i];
                }
            }
            int max=dp[0];
            for(int i =1;i<len;i++){
                if(dp[i]>max) max =dp[i];
            }
            return max;
        }
    }

    public static  void main(String[] args){
        int array[] = new int[]{6,-3,-2,7,-15,1,2,2};
        Solution solution = new Solution();
        int result = solution.FindGreatestSumOfSubArray(array);
        System.out.println(result);
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值