面试题42连续子数组的最大和
题目描述
HZ偶尔会拿些专业问题来忽悠那些非计算机专业的同学。今天测试组开完会后,他又发话了:在古老的一维模式识别中,常常需要计算连续子向量的最大和,当向量全为正数的时候,问题很好解决。但是,如果向量中包含负数,是否应该包含某个负数,并期望旁边的正数会弥补它呢?例如:{6,-3,-2,7,-15,1,2,2},连续子向量的最大和为8(从第0个开始,到第3个为止)。给一个数组,返回它的最大连续子序列的和,你会不会被他忽悠住?(子向量的长度至少是1)
思路:
用动态规划可以很好解决问题,维护一个dp数组,可以每个值都存到目前为止最大的和,如果前面的和为负数,则dp[i]=array[i];如果前面的和为正数,dp[i]=d[i-1]+array[i];
最终的dp公式为:
d p [ i ] = { d p [ i ] i=0||dp[i]<0 d p [ i − 1 ] + a r r a y [ i ] dp[i]>=0 dp[i]= \begin{cases} dp[i]& \text{i=0||dp[i]<0}\\ dp[i-1]+array[i]& \text{dp[i]>=0} \end{cases} dp[i]={dp[i]dp[i−1]+array[i]i=0||dp[i]<0dp[i]>=0
package 优化时间和空间效率;
public class 面试题42连续子数组的最大和 {
public static class Solution {
public int FindGreatestSumOfSubArray(int[] array) {
int len = array.length;
int dp[] = new int[len];
for(int i =0;i<len;i++){
dp[i]=0;
}
dp[0]=array[0];
for(int i=1;i<len;i++){
if(dp[i-1]>=0){
dp[i]=dp[i-1]+array[i];
}else{
dp[i]=array[i];
}
}
int max=dp[0];
for(int i =1;i<len;i++){
if(dp[i]>max) max =dp[i];
}
return max;
}
}
public static void main(String[] args){
int array[] = new int[]{6,-3,-2,7,-15,1,2,2};
Solution solution = new Solution();
int result = solution.FindGreatestSumOfSubArray(array);
System.out.println(result);
}
}