2020牛客多校第二场 H-Happy Triangle(set + 权值线段树)

题目链接 H-Happy Triangle

考虑以下情况:

  • 当x为最大值时:找到两个前驱 p1、p2,存在 p1 + p2 > x 即合法。
  • 当x为不是最大值时:
  1. 找到两个前驱 p1、p2,存在 p1 + p2 > x 即合法。
  2. 找到一个值 p1 >= x,p2 为 p1 的前驱,存在 p1 - p2 < x 即合法。

离散化后set,cnt数组共同维护pre,nxt,线段树维护相邻两个数之差。

#pragma GCC optimize(2)
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<int, ll> pii;
typedef vector<int> vi;
const int maxn = 4e5 + 10, mod = 1e9 + 7;
const ll inf = 1e18;
pii a[maxn];
int tot, n, cnt[maxn];
ll ls[maxn];
struct Tree
{
    int l, r;
    ll mn, lm, rm;
}tree[maxn << 2];

void push_up(int p) {tree[p].mn = min(tree[p<<1].mn, tree[p<<1|1].mn);}

void build(int p, int l, int r)
{
    tree[p].l = l;
    tree[p].r = r;
    tree[p].lm = tree[p].rm = tree[p].mn = inf;
    if(l == r) return;
    int mid = l + r >> 1;
    build(p<<1, l, mid);
    build(p<<1|1, mid+1, r);
    push_up(p);
}

ll query(int p, int l, int r)
{
    if(l <= tree[p].l and tree[p].r <= r)
        return tree[p].mn;
    int mid = tree[p].l + tree[p].r >> 1;
    ll mn = inf;
    if(l <= mid)
        mn = min(mn, query(p<<1, l, r));
    if(r > mid)
        mn = min(mn, query(p<<1|1, l, r));
    return mn;
}

void change(int p, int x, ll lm, ll rm)
{
    if(tree[p].l == tree[p].r)
    {
        if(lm != -1) tree[p].lm = lm;
        if(rm != -1) tree[p].rm = rm;
        tree[p].mn = min(tree[p].lm, tree[p].rm);
        return;
    }
    int mid = tree[p].l + tree[p].r >> 1;
    if(x <= mid)
        change(p<<1, x, lm, rm);
    else 
        change(p<<1|1, x,lm, rm);
    push_up(p);
}

set<int> st;
void add(ll x)
{
    int v = lower_bound(ls+1, ls+1+tot, x) - ls;
    if(!cnt[v])
    {
        auto pre = --st.lower_bound(v);
        auto nxt = st.upper_bound(v);
        change(1, v, ls[v] - ls[*pre], ls[*nxt] - ls[v]);
        if(cnt[*pre] == 1)
            change(1, *pre, -1, ls[v] - ls[*pre]);
        if(cnt[*nxt] == 1)
            change(1, *nxt, ls[*nxt] - ls[v], -1);
        cnt[v]++;
        st.insert(v);
    }else 
    {
        cnt[v]++;
        change(1, v, 0, 0);
    }
}

void del(ll x)
{
    int v = lower_bound(ls+1, ls+1+tot, x) - ls;
    if(cnt[v] >= 3)
    {
        cnt[v]--;
    }else if(cnt[v] == 2)
    {
        auto pre = --st.lower_bound(v);
        auto nxt = st.upper_bound(v);
        change(1, v, ls[v] - ls[*pre], ls[*nxt] - ls[v]);
        cnt[v]--;
    }else if(cnt[v] == 1)
    {
        auto pre = --st.lower_bound(v);
        auto nxt = st.upper_bound(v);
        change(1, v, inf, inf);
        if(cnt[*pre] < 2)
            change(1, *pre, -1, ls[*nxt] - ls[*pre]);
        if(cnt[*nxt] < 2)
            change(1, *nxt, ls[*nxt] - ls[*pre], -1);
        st.erase(v);
        cnt[v]--;
    }
}

bool ask(ll x)
{
    int v = lower_bound(ls+1, ls+1+tot, x) - ls;
    auto nxt = st.upper_bound(v);
    if(st.size() == 2) return false;
    if(*nxt == tot)
    {
        int a = *(--nxt);
        int b = 1;
        if(cnt[*nxt] >= 2) b = a;
        else if(nxt != st.begin()) b = *(--nxt);
        return ls[a] + ls[b] > x;
    }else 
    {
        int a = *(--nxt);
        int b = 1;
        if(cnt[*nxt] >= 2) b = a;
        else if(nxt != st.begin()) b = *(--nxt);
        if(ls[a] + ls[b] > x) return true;
        return query(1, v, tot) < x;
    }
}

int main()
{
    ios::sync_with_stdio(0);
    cin.tie(0);
    cin >> n;
    for(int i = 1; i <= n; i++)
    {
        cin >> a[i].first >> a[i].second;
        ls[i] = a[i].second; //离散化
    }
    ls[n+1] = -inf; // 哨兵
    ls[n+2] = inf;
    sort(ls+1, ls+3+n);

    tot = unique(ls+1, ls+3+n) - ls - 1;
    st.insert(1);
    cnt[1] = 1;
    st.insert(tot);
    cnt[tot] = 1;
    build(1, 1, tot);
    for(int i = 1; i <= n; i++)
    {
        int op = a[i].first, x = a[i].second;
        if(op == 1)
            add(x);
        else if(op == 2)
            del(x);
        else cout << (ask(x)? "Yes": "No") << '\n';
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值