Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the following properties:
- Integers in each row are sorted from left to right.
- The first integer of each row is greater than the last integer of the previous row.
For example,
Consider the following matrix:
[ [1, 3, 5, 7], [10, 11, 16, 20], [23, 30, 34, 50] ]
Given target = 3
, return true
.
方法是对二位数组下标进行处理,使其可以按一维数组的方式进行binary search
public class Solution {
public boolean searchMatrix(int[][] matrix, int target) {
if (matrix == null || matrix.length == 0 || matrix[0].length == 0) {
return false;
}
int row = matrix.length;
int col = matrix[0].length;
int start = 0;
int end = row * col - 1;
int mid;
while (start + 1 < end) {
mid = start + (end - start) / 2;
if (target == matrix[mid / col][mid % col]) {
return true;
} else if (target > matrix[mid / col][mid % col]) {
start = mid + 1;
} else {
end = mid - 1;
}
}
if ((target == matrix[start / col][start % col]) || (target == matrix[end / col][end % col])) {
return true;
} else {
return false;
}
}
}
可以有更简练一点的写法:
public class Solution {
public boolean searchMatrix(int[][] matrix, int target) {
if (matrix == null || matrix.length == 0 || matrix[0].length == 0) {
return false;
}
int row = matrix.length;
int col = matrix[0].length;
int start = 0;
int end = row * col - 1;
int mid;
while (start <= end) {
mid = start + (end - start) / 2;
if (target == matrix[mid / col][mid % col]) {
return true;
} else if (target > matrix[mid / col][mid % col]) {
start = mid + 1;
} else {
end = mid - 1;
}
}
return false;
}
}
第二遍做,感觉这种表示方法更好一些 也不容易出错:
public class Solution {
public boolean searchMatrix(int[][] matrix, int target) {
if(matrix == null || matrix.length == 0 || matrix[0].length == 0) {
return false;
}
int row = matrix.length;
int col = matrix[0].length;
int start = 1;
int end = row * col;
while (start <= end) {
int mid = start + (end - start) / 2;
if (target == matrix[(mid - 1) / col][(mid - 1) % col]) {
return true;
} else if (target > matrix[(mid - 1) / col][(mid - 1) % col]) {
start = mid + 1;
} else {
end = mid - 1;
}
}
return false;
}
}