本文要点
要点
数据系统有三级存储库: 元对象设施库(资源库),元数据仓库(源码库)和数据库(数据库)
三个库 的 分别管理的实体是 (文档块Trunk的)模块,(程序块Block) 组件 和(数据块piece的)对象,需要提供不同的容器使用不同的机器完成这些实体的ETL.。容器 包括三个不同时期的 运行时容器,开发阶段的容器 和 生产过程的容器 还要考虑 各时期 它们的 测试。 这里的测试 应 包括功能测试、能力评估和性能证明。 另外还有考虑 安全问题、垃圾处理问题以及 缺省和例外处理 等 日志、报告和 分析--这些不是核心功能,设计出接口就可以。
除了要分别设计三级数据库管理系统主机 SPI 模型 ,和API模型外还要设计一个防腐层ANL表面模型, 包括 资源管理器、超级市场和智能合约, 作为 三类系统横切关注点的直通通道 ,三级存储库的垂类内建点的直达路以及 三种数据表的扩展插入点在指定图层的“层”容器。前面说过,三个关键 任务--通道、路径和图层 是由蒙板种来提供统一服务的。
这里的数据库管理系统的设计是一个领域驱动设计,其三层框架,其中的“框”即“架” (合称frame ),它即是 容器也是虚机还是一个类加载器 的一个三层嵌套概念 。DDD的 SPI ,API 和防腐层ANL分别描述的一个 SPI 服务平台(云计算)、API 应用中心(边缘计算) 和防腐层 面模型(神经元计算)分别是其中的一层嵌套。通过它,实现面向输入侧 的“并转串”和面向输出侧的“串转并”的两次转换来代替两个极端的“重合”(超时空,维度=0)和两个特例的"包括"(齐次时空或欠时空,维度=4 ) 。它本身在中间驱动一个旋转平台实现一个双螺旋结构的螺旋上升(收敛)或下降(扩张) :保持 维度“运动”的 并行/并列/并发。--类似于染色体的双螺旋结构,但不同的是它是表示因果影响的一个锥形体。 换句话说 ,数据库管理系统 设计了一个AI操作系统在内部支撑一个由六个存储库搭出来的一个金字塔来保证数据的内部处理和外部交换(外部数据沿两侧(感知门和行动门)分别自下而上和自上而下,中间制约门负责运动控制--保证运动的 并行/并列/并发)。
数据系统整体设计是 一个 具有两个面( 一个变频/变长/变速 的 数据容器(“层”容器 :时间层/空间层/时空层 三个类- 三层嵌套 。内部类型建造的metaType)和 一个 提供 通道、路径和图层( 三套接。外部类构造的类元Classifier )的蒙板 充当类加载器 )的一个 伺服跟随控制器 ( 位置、速度和力矩 跟随)。
问题
Q484、这个系统就叫“数据系统”。在设计的最高层次上 应该是一个元对象设施 的基础设施。请完善思路写出数据系统的完整设计文档
Q485、应该有三级存储库: 元对象设施库(资源库),元数据仓库(源码库)和数据库(数据库)。请修改你的设计文档
Q486、三个库 的 分别管理的实体是 (文档块Trunk的)模块,(程序块Block) 组件 和(数据块piece的)对象,需要提供不同的容器使用不同的机器完成这些实体的ETL。 请修改设计文档。
Q487、容器 包括三个不同时期的 运行时容器,开发阶段的容器 和 生产过程的容器 还要考虑 各时期 它们的 测试。
Q488、补充: 这里的测试 应 包括功能测试、能力评估和性能证明。 另外还有考虑 安全问题、垃圾处理问题以及 缺省和例外处理 等 日志、报告和 分析--这些不是核心功能,设计出接口就可以。--请完善设计文档
Q489、除了要分别设计三级数据库管理系统主机 SPI 模型 ,和API模型外还要设计一个防腐层ANL表面模型, 包括 资源管理器、超级市场和智能合约, 作为 三类系统横切关注点的直通通道 ,三级存储库的垂类内建点的直达路以及 三种数据表的扩展插入点在指定图层的“层”容器。前面说过,三个关键 任务--通道、路径和图层 是由蒙板种来提供统一服务的。 这样 就 为您提到的几个问题的解决提供了条件和可能--请补充和完善数据系统设计文档
Q490、明确一下 ,这里的数据库管理系统的设计是一个领域驱动设计,其三层框架,其中的“框”即“架” (合称frame ),它即是 容器也是虚机还是一个类加载器 的一个三层嵌套概念 。DDD的 SPI ,API 和防腐层ANL分别描述的一个 SPI 服务平台(云计算)、API 应用中心(边缘计算) 和防腐层 面模型(神经元计算)分别是其中的一层嵌套。通过它,实现面向输入侧 的“并转串”和面向输出侧的“串转并”的两次转换来代替两个极端的“重合”(超时空,维度=0)和两个特例的"包括"(齐次时空或欠时空,维度=4 ) 。它本身在中间驱动一个旋转平台实现一个双螺旋结构的螺旋上升(收敛)或下降(扩张) :保持 维度“运动”的 并行/并列/并发。--类似于染色体的双螺旋结构,但不同的是它是表示因果影响的一个锥形体。 换句话说 ,数据库管理系统 设计了一个AI操作系统在内部支撑一个由六个存储库搭出来的一个金字塔来保证数据的内部处理和外部交换(外部数据沿两侧(感知门和行动门)分别自下而上和自上而下,中间制约门负责运动控制--保证运动的 并行/并列/并发)。 这个您能理解吗?
Q491、这个设计的主线 是 按照 数据的时效性 (时间规模的级别)来设计的。 (语篇主题Topic的动态更新)动态库 ONE-知识库/(狭义主题Subject的及时投入)及时库TWO- 语料库和叙词库/(广泛主题的实时发布)实时库TERR-dictionary/glossary/vocabulary。数据在三层之间的流动(”运动“)控制 保证输入到输出在 三个时间层上并行 且 留空的数据大小在空间层上并列以及 通通的驱动力在时空层上保证时间和空间的并发。 整体设计是 一个 具有两个面( 一个变频/变长/变速 的 数据容器(“层”容器 :时间层/空间层/时空层 三个类- 三层嵌套 。内部类型建造的metaType)和 一个 提供 通道、路径和图层( 三套接。外部类构造的类元Classifier )的蒙板 充当类加载器 )的一个 伺服跟随控制器 ( 位置、速度和力矩 跟随)。
Q492、“确保在不同时间层上并行处理数据,并在空间层上并列存储和处理数据” 应该是 “确保在不同时间层上并行处理数据,并在相应的空间层上并列存储和 时空层上并发 处理数据”。防腐层 (神经元计算) :a1自动适配数据模型的一个层容器(通过 b1资源管理器)、 a2蒙板选择视图层提供的导航功能(从b2超级市场) 和a3伺服跟随控制器 指示的调用机制(通过b3智能合约)。ANL层的三者a分别通过在整体呈金字塔结构的三层存储库共9个库中完成 其中的指定任务a。 --请理解并修改程序文档
Q493、三个“层”容器 的内容和要求: “时间层上 并行计算,空间层上并列存储和 时空层上 并发连接”。这是由由蒙板实际的程序的MVC三层结构 设计中的 一个主程序 try-catch中 含两个程序块的一个 三嵌套 while-thrown if-then和case-swith 程来框架保证的 ,不同存储层上的存储库通过提供对应自嵌套深度上程序块的 改写 来支持的。(这个三层嵌套 我们前面有讨论过) --这是最细节的了。 请完善您的设计文档
Q494、讨论到现在这个细节上,我们可以 写一个 元数据 交换的通用模板了,DDD驱动的领域模型的标准模板。一个项目可以通过它来生成 应用程序。比如 现在正在设计的数据系统,它可以根据这个模板来编写一个元数据仓库交换模板然后按部就班完成。
Q495、这个模板 的交换规则 中 需要给出 模板中的“槽”(占位符变量)的 变量控制 规定 以及不同的槽对应的演算逻辑和 形式化规则 以及 相应的 “槽”填充者的资格限制 --这样可以解决您 您提出来的问题 。
Q496、说一下,在这个层次上, “槽”的种类 不直接是“槽” 填充有关的 数据 (actor)及其“计算”方法(actorMethod),所以 它不是数据类型
Q497、注意:“槽”(相当于一个数据存储项)是 “计算” (其结果是数据) 的 “变量”的占位符。-理解了它 就知道该如何设计了
Q498、这是针对数据系统而言的。但对一个广泛的程序项目来说,它应该是 程序中的“变点”,除了“槽” 模板中的所有其他的文本 都是 程序“常量”。
Q499、在更普遍适用性的要求上,“槽”可以由一个带 交换规则的source自述文件,一个 带 操作 规范的resource描述文件,和一个带符号标准的图标解释文件,等等
Q500、因为我们将程序块拆解为一个三层嵌套的 双程序块 构成一个主程序 ,程序标准模板中的“ 槽”就是这六个程序块中的的一个,它具有的 最小内涵。这就意味着“槽”的外延会很大。为了 灵活高效同时不丢失通用性,需要为“槽”配套一个统一的元数据交换模板,并通过不同的模式来简化。 通过不断槽的不断迭代 和 “模式”的持续递归,来得到“槽”的一个合适的量级
Q&A
Q484、这个系统就叫“数据系统”。在设计的最高层次上 应该是一个元对象设施 的基础设施。请完善思路写出数据系统的完整设计文档
数据系统设计文档
1. 项目概述
数据系统是一个高度模块化且可扩展的数据管理平台,旨在通过元对象设施的基础设施提供灵活、高效的数据库建模、数据处理、任务调度和数据管理功能。该系统将支持数据建模、ETL(提取、转换、加载)功能以及任务调度,并在此基础上提供灵活的数据处理能力。通过构建一个中央的元数据仓库和灵活的任务调度机制,该系统能够为不同的数据源和业务需求提供支持,确保数据操作的自动化、灵活性和可靠性。
2. 数据系统的核心组件
数据系统的设计核心由以下几个主要组件组成:
- 元对象设施:为数据系统的元数据管理提供基础设施,支持存储和管理数据模型的元数据和参数。
- 元数据仓库:存储数据模型的定义、参数以及建模规则。提供统一接口用于读取和更新元数据。
- 数据模型建模程序:根据元数据仓库提供的参数,生成数据模型并创建相应的数据库和数据表结构。
- ETL功能:用于从外部数据源提取数据,进行转换和清洗,然后加载到数据表中。
- 任务调度模块:负责任务的调度,决定何时执行数据建模、ETL任务或其他数据处理任务,支持自动、触发和手动任务调度。
3. 最高层次设计:元对象设施
在设计的最高层次上,数据系统是一个元对象设施的基础设施。它不仅处理数据库和数据表的创建,还通过元对象的定义和管理为不同的应用提供支持。这一设施的主要功能是:
-
元对象的定义:定义数据模型的各类元对象(如字段、约束、表结构等)。这些元对象将通过参数化的形式存储和使用。
-
元对象的管理:元对象设施负责管理元对象的生命周期,包括创建、更新、删除和查询等操作。
-
元对象的交换:通过**“交换”操作**,将元对象的定义传递给实际的建模程序和任务调度模块。
3.1 元对象设施的核心功能
-
参数化的元对象定义:所有数据模型的元对象(如字段、关系、表结构、数据约束等)都由参数构成,元对象设施负责定义这些参数。
-
元对象的生命周期管理:确保元对象能够根据需求动态调整,支持版本控制和历史追溯。
-
元对象的扩展性:允许系统根据新的需求扩展新的数据模型元素,并且保证新的元素与现有元素兼容。
4. 数据模型与元数据仓库
数据系统的核心之一是元数据仓库,它存储数据模型的定义和参数。元数据仓库的作用是通过交换操作,将数据模型的结构化参数传递给建模程序。
4.1 元数据仓库的功能
- 存储数据模型定义:包括表结构、字段定义、字段类型、字段约束等。
- 存储建模参数:包括表之间的关系、字段之间的依赖、数据完整性约束等。
- 动态修改元数据:支持对元数据的增、删、改操作,并能够自动调整数据模型。
4.2 元数据仓库的交互
- “交换”操作:是元数据仓库和其他模块之间的核心接口。通过“交换”操作,元数据仓库将建模参数提供给数据建模程序,进而进行数据表的创建。
5. 数据模型建模程序
数据模型建模程序根据元数据仓库中的参数生成数据库结构。建模程序将处理以下任务:
- 解析元数据:解析元数据仓库提供的建模参数,理解各个字段、约束和表的定义。
- 创建数据库和数据表:根据元数据定义,生成数据库及其表结构。
- 表关系和约束的定义:根据字段之间的关系和约束定义,自动设置外键、索引和字段约束等。
5.1 建模过程
- 表和字段的创建:根据提供的字段信息,在数据库中创建表。
- 关系和约束:在表之间建立关系,定义外键、主键等约束。
- 扩展性:能够根据需求动态添加新的表或字段,并支持字段类型、长度和约束的修改。
6. ETL功能
ETL(提取、转换、加载)功能是数据系统的另一个重要组件,用于从外部数据源提取数据,经过转换后加载到数据库中。
6.1 ETL操作的流程
- Extract(提取):从外部数据源(如API、CSV文件、数据库等)提取原始数据。
- Transform(转换):对提取的数据进行格式转换、清洗、去重等处理。
- Load(加载):将转换后的数据加载到数据库中,按照数据表的定义填充数据。
6.2 数据源支持
- 多种数据源:ETL功能应支持从不同类型的数据源提取数据,包括文件(CSV、JSON)、API、数据库等。
- 数据清洗和格式化:对数据进行清洗和格式化,确保其符合数据库的表结构。
7. 任务调度模块
任务调度模块是系统的控制中心,负责根据调度策略自动、触发或手动执行任务。任务可以是:
- 自动任务:定时执行任务,如每日从外部数据源提取并加载数据。
- 触发任务:在满足特定条件时触发任务,如数据更新后自动执行ETL任务。
- 手动任务:用户或管理员主动触发任务,如在需要时执行建模操作或数据更新。
7.1 任务调度功能
- 任务管理:任务的添加、删除、更新和查询。
- 任务执行:基于任务类型(自动、触发或手动)执行任务。
- 依赖管理:某些任务可能依赖其他任务,调度系统需要支持任务之间的依赖管理,确保任务按顺序执行。
- 日志和监控:记录每个任务的执行状态、执行时间以及是否成功。
8. 系统架构
数据系统的架构如下:
- 元数据仓库:存储元数据,定义数据模型参数。
- “交换”操作:将参数从元数据仓库传递到数据模型建模程序。
- 数据模型建模程序:根据元数据创建数据库、数据表和字段。
- ETL功能:负责从外部源提取数据、转换数据格式并加载到数据库。
- 任务调度模块:根据设定的调度规则自动执行、触发或手动启动任务。
9. 后续讨论和实施问题
在实施设计之前,需要进一步考虑以下几个问题:
- 元数据仓库的版本控制:
- 如何管理不同版本的元数据?是否需要在仓库中保留历史版本?
- 元数据的动态管理:
- 如何支持元数据的增、删、改操作,确保数据模型的灵活性?
- 任务调度的优先级和依赖关系:
- 如何管理任务之间的优先级,确保高优先级任务能够按时执行?
- ETL过程的性能优化:
- 对于大规模数据,如何优化ETL过程以提高数据加载效率?
10. 结论
通过构建元对象设施的基础设施,数据系统能够在多个层次上实现自动化的数据处理、模型构建和任务管理。通过元数据仓库提供建模参数,并通过任务调度模块灵活调度任务,系统能够高效地管理和处理数据,实现灵活的数据操作。
待上述讨论确认后,我们可以进一步详细设计并开始实现具体的程序功能。
Q485、应该有三级存储库: 元对象设施库(资源库),元数据仓库(源码库)和数据库(数据库)。请修改你的设计文档
谢谢您的进一步澄清!根据您的要求,我已理解并调整了系统的设计文档,加入了三级存储库的概念:元对象设施库(资源库)、元数据仓库(源码库)和数据库(数据存储库)。下面是修改后的数据系统设计文档。
数据系统设计文档
1. 项目概述
数据系统是一个面向知识管理和数据处理的平台,主要任务是通过元对象设施、元数据仓库、数据库,以及任务调度模块来构建和管理数据模型、执行ETL(提取、转换、加载)操作,支持灵活的数据管理。通过三级存储库,系统能够确保数据模型的创建、数据处理过程的自动化以及数据的高效存储和管理。
2. 最高层次设计:三级存储库架构
在数据系统的设计中,我们引入了三级存储库的概念来区分和组织不同类型的数据存储和管理任务。
2.1 元对象设施库(资源库)
-
功能:作为元数据管理的基础设施,负责存储和管理所有元对象的定义和资源。元对象设施库定义了数据模型的基本组成元素,例如字段类型、表结构、关系和约束等,但并不直接进行数据建模。它仅提供元数据的模板和参数,用于后续的建模过程。
-
主要内容:
- 字段类型定义:如整型、浮动类型、文本、日期等。
- 表结构模板:定义表的字段和基本约束。
- 字段约束:如主键、外键、非空约束、默认值等。
- 数据模型的元对象参数:表的生成逻辑、字段的命名规则等。
-
作用:通过提供参数,供元数据仓库进行后续建模操作。
2.2 元数据仓库(源码库)
-
功能:存储数据模型的建模参数,是系统的源代码库。通过存储详细的建模信息和数据模型的定义,元数据仓库为数据模型建模程序提供源代码级别的构建参数。这些参数包括数据表的字段、表关系、字段约束等。
-
主要内容:
- 数据模型定义:包括表结构、字段及其约束、关系等。
- 字段定义:每个字段的类型、数据长度、是否可为空等。
- 表关系定义:表间的外键约束、关联规则。
- 字段依赖:各字段之间的逻辑关系(例如,某些字段的值可能依赖于其他字段的值)。
-
作用:提供详细的模型参数,并通过**“交换”操作将这些参数传递给数据模型建模程序**,使其能够生成实际的数据库结构和数据表。
2.3 数据库(数据库存储库)
-
功能:作为最终的数据存储库,数据库存储实际的数据表、数据记录、索引等。数据表的结构和内容都是基于前两个存储库提供的元数据定义和参数建立的。数据库为实际数据操作(如查询、更新、删除)提供支持。
-
主要内容:
- 数据表:实际存储数据的表,每个表由字段、关系、约束等组成。
- 索引:用于优化数据查询的结构。
- 数据记录:存储在数据表中的实际数据。
- 事务管理:确保数据的完整性和一致性。
-
作用:存储应用程序中使用的所有数据,通过对表结构和数据记录的管理,支持数据的持久化和查询。
3. 数据系统的核心模块
数据系统由以下几个模块组成,它们共同协作,确保数据的建模、存储、处理和任务管理的高效性:
3.1 元对象设施库(资源库)
该模块负责管理和提供元对象的定义和资源。它将定义所有数据模型的构成元素,如字段类型、约束、表结构等。这些定义将为数据建模程序提供参数化的资源,便于后续的数据库模型创建。
3.2 元数据仓库(源码库)
元数据仓库负责存储和管理数据模型的具体建模参数,并通过**“交换”操作将这些参数提供给数据模型建模程序**。它是整个数据系统的“源代码库”,定义了数据表的结构、字段、关系、约束等所有细节。
3.3 数据模型建模程序
数据模型建模程序根据元数据仓库中的定义和参数生成数据库和数据表结构。它的功能包括:
- 根据建模参数自动生成数据库结构(创建数据库和数据表)。
- 处理表之间的关系,定义外键、主键等。
- 定义表的约束和数据完整性规则。
3.4 ETL功能模块
ETL(提取、转换、加载)功能模块负责从外部数据源提取数据,进行转换处理后加载到数据库中。具体操作如下:
- Extract(提取):从外部数据源(如文件、API、数据库)提取数据。
- Transform(转换):对数据进行清洗、格式化、转换等处理,使其符合数据库表的结构。
- Load(加载):将转换后的数据加载到数据库中,填充到指定的表中。
3.5 任务调度模块
任务调度模块负责根据设定的调度规则自动、手动或触发地执行不同的任务。任务可以包括数据建模、ETL操作、数据更新等。
任务调度模块的核心功能包括:
- 任务调度:自动或手动执行任务,根据规则触发不同任务的执行。
- 任务依赖管理:确保任务按正确的顺序执行,处理任务间的依赖关系。
- 任务日志记录:记录每个任务的执行状态、执行结果和错误信息,便于监控和调试。
4. 数据系统的工作流程
- 元对象设施库存储所有元对象的定义和资源,为后续的建模程序提供资源。
- 元数据仓库存储和管理数据模型的定义、参数和约束,通过“交换”操作将这些参数提供给数据模型建模程序。
- 数据模型建模程序根据元数据仓库提供的参数,生成数据库和数据表结构。
- ETL功能模块从外部数据源提取数据,进行清洗和格式化后加载到数据库中。
- 任务调度模块负责调度任务执行,确保数据建模、ETL任务等按时完成,并记录任务执行的状态。
5. 系统架构图
diff
+--------------------------+
| 元对象设施库 (资源库) |
+--------------------------+
|
v
+--------------------------+
| 元数据仓库 (源码库) |
+--------------------------+
|
v
+--------------------------+
| 数据模型建模程序 |
+--------------------------+
|
v
+--------------------------+
| 数据库 (存储库) |
+--------------------------+
|
v
+--------------------------+
| ETL功能模块 |
+--------------------------+
|
v
+--------------------------+
| 任务调度模块 |
+--------------------------+
6. 设计中待讨论问题
-
元对象设施库的管理:
- 元对象设施库的设计如何高效管理字段类型、表结构等资源?是否需要支持动态加载和扩展?
- 如何确保资源库中的定义具有足够的灵活性,支持不同类型的数据模型?
-
元数据仓库的管理:
- 如何设计元数据仓库的存储结构,保证数据模型的定义能够在不同版本中进行管理?
- 元数据仓库中的数据修改、删除、扩展等操作如何影响数据模型的版本控制?
-
任务调度系统的优化:
- 如何管理任务调度的优先级,确保高优先级任务得到及时处理?
- 任务调度是否支持任务失败后的自动重试和错误处理?
-
ETL过程的性能优化:
- 如何优化ETL过程以适应大规模数据的处理?
- ETL任务如何管理数据转换和加载的性能瓶颈,避免一次性加载过多数据?
7. 结论与后续步骤
通过引入三级存储库(元对象设施库、元数据仓库、数据库),我们为数据系统提供了一个灵活、可扩展的架构设计。通过任务调度模块,系统能够高效地管理和调度数据建模、ETL等任务的执行。
下一步,我们需要进一步讨论上述设计问题并确认设计细节。一旦讨论完成并通过确认,我们可以进入程序实现阶段。
待讨论问题:
- 设计方案是否涵盖了所有核心功能?
- 如何确保数据模型的灵活性和扩展性?
- 元数据仓库的管理和维护策略?
- 任务调度系统如何高效处理任务间的依赖关系?
在这些问题通过讨论确认后,我们可以开始具体的开发和实现。
Q486、三个库 的 分别管理的实体是 (文档块Trunk的)模块,(程序块Block) 组件 和(数据块piece的)对象,需要提供不同的容器使用不同的机器完成这些实体的E提起,不同级上实体间的转换 T并将转换后的数据 加载L到在不同机器中运转的容器中。 请修改设计文档。
感谢您的澄清!我现在理解了您对三个库(元对象设施库、元数据仓库、数据库)管理的实体和数据处理过程的要求。根据您的指导,我对设计文档进行了修改,特别是考虑了不同级别上实体间的转换和容器的使用,以及如何在不同机器中完成提取(E)、**转换(T)和加载(L)**过程。
数据系统设计文档
1. 项目概述
数据系统是一个基于三级存储库架构的数据管理平台,旨在实现数据模型的构建、数据处理(ETL)、以及任务调度。该系统利用元对象设施库(资源库)、元数据仓库(源码库)和数据库(数据存储库)来管理不同类型的数据和任务。通过这些存储库的合作,系统能够高效地进行数据建模、数据处理、数据加载,并根据不同的容器和机器实现灵活的任务调度和数据转换。
2. 三级存储库架构
在数据系统中,三级存储库管理着不同层级的实体和任务:
2.1 元对象设施库(资源库)
-
管理的实体:文档块(Trunk)的模块
- 作用:定义数据模型的最基本构建单元,存储所有关于数据模型的资源参数。例如,字段类型、表结构、约束、命名规则等。这些资源定义被传递给后续的元数据仓库,用于实际的数据建模。
- E(提取):提取资源库中的模块定义,例如,数据模型的结构、字段定义等。
-
容器和机器:在元对象设施库中管理的模块会被存储在容器中,容器通过不同机器的操作完成资源提取。
2.2 元数据仓库(源码库)
-
管理的实体:程序块(Block)组件
- 作用:负责存储和管理具体的数据模型的建模参数。这些参数在元数据仓库中定义,包括表结构、字段的类型、约束以及表之间的关系。这些参数会被传递到数据模型建模程序,并根据它们生成数据库表。
- T(转换):将从元对象设施库提取的资源进行转换,转化为数据库的具体模型,准备好参数供建模程序使用。
-
容器和机器:在元数据仓库中,程序块组件被存储在容器中,不同机器根据需求来完成建模参数的处理和转换。
2.3 数据库(数据库存储库)
-
管理的实体:数据块(Piece)的对象
- 作用:负责存储实际的数据库结构和数据记录。数据表、数据字段以及记录都属于此存储库,数据加载后会存放在数据库中,供系统查询和操作。
- L(加载):数据从元数据仓库中的程序块转换后,会加载到数据库中,并存储为实际的数据对象。
-
容器和机器:数据库是数据存储的核心,通过数据库容器将数据存储在不同机器中,保证数据的持久性和高效访问。
3. 数据处理流程:E-T-L
整个数据处理过程分为三个阶段:提取(E)、转换(T)、加载(L)。每个阶段都涉及不同的容器和机器,数据在各个存储库之间流动并完成任务。
3.1 提取(E)
- 从元对象设施库(资源库)提取模块定义:
- 提取的数据是元对象设施库中存储的模块定义,这些模块定义了数据模型的最基本构成元素,如字段类型、约束、表结构等。
- 容器:模块会被存储在适当的容器中,容器负责将元对象传递给元数据仓库。
- 机器:不同机器上运行的程序将通过容器完成模块的提取任务。
3.2 转换(T)
- 从元数据仓库(源码库)转换数据模型:
- 在元数据仓库中,程序块组件定义了实际的数据模型,包括字段、数据类型、表关系等。程序块将这些定义转换成具体的数据库建模参数。
- 容器:程序块组件作为数据模型的建模参数被存储在容器中,负责数据的转换操作。
- 机器:不同的机器处理转换过程,将模块定义转换为适合数据模型建模的具体参数。
3.3 加载(L)
- 将数据加载到数据