利用Python 进行数据分析 Python_for_data_analysis 笔记

本书介绍了使用Python进行数据分析的核心库,包括NumPy、Pandas和Matplotlib。通过学习,读者可以掌握数据清洗、数据存储、数据规整以及绘图与可视化的技能。内容涵盖Python基础、内建数据结构、Numpy数组操作、Pandas数据框架的使用,以及数据加载和存储的不同格式。
摘要由CSDN通过智能技术生成

利用Python 进行数据分析  徐敬一  译

Python for Data Analysis:Data Wrangling with Pandas Numpy and IPython Author  Wes McKinney

http://github.com/wesm/pydata-book

1.3 重要的Python 库

  1. NumPy NumPy
  2. pandas pandas - Python Data Analysis Library
  3. matplotlib Matplotlib — Visualization with Python
  4. IPthon Jupyter
  5. SciPy
  6. scikit-learn
  7. statsmodels

第二章 Python 语言基础

第三章 内建数据结构,函数及文件

3.1.1元组

3.1.2 列表

3.1.3 内建序函数

3.1.4字典

3.1.5集合

3.2 函数

第四章 Numpy

#chapter4 numpy basic 
from numpy import *
eye(4)

import numpy as np
data = np.random.randn(2,3)
data

data.shape
data.dtype

#4.1.1 生成ndarray

data1 = [6,7.5,8,0,1]
arr1 = np.array(data1)
arr1

data2 = [[1,2,3,4],[5,6,7,8]]
arr2 = np.array(data2)
arr2


arr2.ndim
arr2.shape

np.zeros(10)
np.zeros((3,6))
np.empty((2,3,2))

np.arange(15)




#深度学习入门 4.3.2 数值微分的例子

import numpy as np
import matplotlib.pylab as plt

def function_1(x):
    return 0.01*x**2+0.1*x

x=np.arange(0.0,20.0,0.1) # 以0.1 为单位,从0到20的数组X
y=function_1(x)
plt.xlabel("x")
plt.ylabel("f(x)")
plt.plot(x,y)
plt.show()



#4.1.2 ndarray 数据类型
#4.1.3 numpy 数组计算
#4.1.4 基础索引与切片

arr= np.arange(10)
arr
arr[5]
arr[5:8]
#4.1.5 布尔索引
names = np.array(['Bob','Joe','Will','Bob','will','Joe','Joe
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Calvin_lii

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值