利用Python 进行数据分析 Python_for_data_analysis 笔记

本书介绍了使用Python进行数据分析的核心库,包括NumPy、Pandas和Matplotlib。通过学习,读者可以掌握数据清洗、数据存储、数据规整以及绘图与可视化的技能。内容涵盖Python基础、内建数据结构、Numpy数组操作、Pandas数据框架的使用,以及数据加载和存储的不同格式。
摘要由CSDN通过智能技术生成

利用Python 进行数据分析  徐敬一  译

Python for Data Analysis:Data Wrangling with Pandas Numpy and IPython Author  Wes McKinney

http://github.com/wesm/pydata-book

1.3 重要的Python 库

  1. NumPy NumPy
  2. pandas pandas - Python Data Analysis Library
  3. matplotlib Matplotlib — Visualization with Python
  4. IPthon Jupyter
  5. SciPy
  6. scikit-learn
  7. statsmodels

第二章 Python 语言基础

第三章 内建数据结构,函数及文件

3.1.1元组

3.1.2 列表

3.1.3 内建序函数

3.1.4字典

3.1.5集合

3.2 函数

第四章 Numpy

#chapter4 numpy basic 
from numpy import *
eye(4)

import numpy as np
data = np.random.randn(2,3)
data

data.shape
data.dtype

#4.1.1 生成ndarray

data1 = [6,7.5,8,0,1]
arr1 = np.array(data1)
arr1

data2 = [[1,2,3,4],[5,6,7,8]]
arr2 = np.array(data2)
arr2


arr2.ndim
arr2.shape

np.zeros(10)
np.zeros((3,6))
np.empty((2,3,2))

np.arange(15)




#深度学习入门 4.3.2 数值微分的例子

import numpy as np
import matplotlib.pylab as plt

def function_1(x):
    return 0.01*x**2+0.1*x

x=np.arange(0.0,20.0,0.1) # 以0.1 为单位,从0到20的数组X
y=function_1(x)
plt.xlabel("x")
plt.ylabel("f(x)")
plt.plot(x,y)
plt.show()



#4.1.2 ndarray 数据类型
#4.1.3 numpy 数组计算
#4.1.4 基础索引与切片

arr= np.arange(10)
arr
arr[5]
arr[5:8]
#4.1.5 布尔索引
names = np.array(['Bob','Joe','Will','Bob','will','Joe','Joe
这本书主要是用 pandas 连接 SciPy 和 NumPy,用pandas做数据处理是Pycon2012上一个很热门的话题。另一个功能强大的东西是Sage,它将很多开源的软件集成到统一的 Python 接口。, Python for Data Analysis is concerned with the nuts and bolts of manipulating, processing, cleaning, and crunching data in Python. It is also a practical, modern introduction to scientific computing in Python, tailored for data-intensive applications. This is a book about the parts of the Python language and libraries you’ll need to effectively solve a broad set of data analysis problems. This book is not an exposition on analytical methods using Python as the implementation language., Written by Wes McKinney, the main author of the pandas library, this hands-on book is packed with practical cases studies. It’s ideal for analysts new to Python and for Python programmers new to scientific computing., Use the IPython interactive shell as your primary development environment, Learn basic and advanced NumPy (Numerical Python) features, Get started with data analysis tools in the pandas library, Use high-performance tools to load, clean, transform, merge, and reshape data, Create scatter plots and static or interactive visualizations with matplotlib, Apply the pandas groupby facility to slice, dice, and summarize datasets, Measure data by points in time, whether it’s specific instances, fixed periods, or intervals, Learn how to solve problems in web analytics, social sciences, finance, and economics, through detailed examples
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Calvin_lii

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值