利用Python 进行数据分析 徐敬一 译
Python for Data Analysis:Data Wrangling with Pandas Numpy and IPython Author Wes McKinney
http://github.com/wesm/pydata-book
1.3 重要的Python 库
- NumPy NumPy
- pandas pandas - Python Data Analysis Library
- matplotlib Matplotlib — Visualization with Python
- IPthon Jupyter
- SciPy
- scikit-learn
- statsmodels
第二章 Python 语言基础
第三章 内建数据结构,函数及文件
3.1.1元组
3.1.2 列表
3.1.3 内建序函数
3.1.4字典
3.1.5集合
3.2 函数
第四章 Numpy
#chapter4 numpy basic
from numpy import *
eye(4)
import numpy as np
data = np.random.randn(2,3)
data
data.shape
data.dtype
#4.1.1 生成ndarray
data1 = [6,7.5,8,0,1]
arr1 = np.array(data1)
arr1
data2 = [[1,2,3,4],[5,6,7,8]]
arr2 = np.array(data2)
arr2
arr2.ndim
arr2.shape
np.zeros(10)
np.zeros((3,6))
np.empty((2,3,2))
np.arange(15)
#深度学习入门 4.3.2 数值微分的例子
import numpy as np
import matplotlib.pylab as plt
def function_1(x):
return 0.01*x**2+0.1*x
x=np.arange(0.0,20.0,0.1) # 以0.1 为单位,从0到20的数组X
y=function_1(x)
plt.xlabel("x")
plt.ylabel("f(x)")
plt.plot(x,y)
plt.show()
#4.1.2 ndarray 数据类型
#4.1.3 numpy 数组计算
#4.1.4 基础索引与切片
arr= np.arange(10)
arr
arr[5]
arr[5:8]
#4.1.5 布尔索引
names = np.array(['Bob','Joe','Will','Bob','will','Joe','Joe