Hdu 1546/Zoj 2750 Idiomatic Phrases Game

最短路问题  Dijkstra


题意:

给出n条边,即n个成语,要求是成语之间能首尾相连所化的最短时间,某个起点有可能是无法到达终点的,是一个有向图。



分析:

先处理字符串,存入图中,然后Dijkstra即可。



前两次WA的原因是处理字符串的时候循环变量弄重复了,即:

        for(i=0; i<t; i++) {
            for(j=0; j<t; j++) {
                e[i][j] = INF;
                if(i==j) continue;
                else if(strcmp(dic[i].back, dic[i].front)==0)
                    e[i][j] = dic[i].t;
            }
        }

错误的地方是,双重循环里,重复比较dic[i].front和dic[i].back,所以WA。



AC代码:

#include <cstdio>
#include <cstring>
using namespace std;

#define MAXN 1010
#define INF 0x3fffffff

struct idiom {
    char front[5],back[5];
    int t;
}dic[MAXN];

int e[MAXN][MAXN],dist[MAXN],s[MAXN];

void Dijkstra(int n) {
    int i,j,k;
    memset(s, 0, sizeof(s));
    for(i=0; i<n; i++)
        dist[i] = e[0][i];
    dist[0] = 0;
    s[0] = 1;
    for(i=1; i<n; i++) {
        int min = INF;
        int u = 0;
        for(j=0; j<n; j++) {
            if(!s[j] && dist[j]<min) {
                min = dist[j];
                u = j;
            }
        }
        s[u] = 1;
        for(k=0; k<n; k++) {
            if(!s[k] && e[u][k]<INF && dist[k]>e[u][k]+dist[u]) {
                dist[k] = e[u][k] + dist[u];
            }
        }
    }
    if(dist[n-1] == INF) printf("-1\n");
    else printf("%d\n", dist[n-1]);
}

int main() {
    int t,i,j;
    char s[100];
    while(scanf("%d", &t),t) {
        memset(dic, 0, sizeof(dic));
        for(i=0; i<t; i++) {
            memset(s, 0, sizeof(s));
            scanf("%d%s", &dic[i].t, s);
            int len = strlen(s);
            for(j=0; j<4; j++) {
                dic[i].front[j] = s[j];
                dic[i].back[j] = s[len-4+j];
            }
            dic[i].front[4] = dic[i].back[4] = '\0';
        }
        for(i=0; i<t; i++) {
            for(j=0; j<t; j++) {
                e[i][j] = INF;
                if(i==j) continue;
                else if(strcmp(dic[i].back, dic[j].front)==0)
                    e[i][j] = dic[i].t;
            }
        }
        Dijkstra(t);
    }
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值