Hdu 3910 Liang Guo Sha

数学期望



题意:使Alice和Bob两个人拿到杀的概率互相不受影响。


分析:假设Alice拿到杀的概率是x,Bob拿到杀的概率是y,则Alice的期望是

E(x) = x*y*A + (1-x)*(1-y)*B - (1-x)*y*C - x*(1-y)*C

        = (1-x)*B - x*C + [x*A - (1-x)*B - (1-x)*C + x*C]*y

令y的系数为0,解得x = (B+C)/(A+B+2*C) , 所以E(x) = (1-x)*B - x*C



AC代码:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <algorithm>

int main() {
	int a, b, c;
	while(scanf("%d%d%d", &a, &b, &c)!=EOF) {
		double x = (double)(b + c) / (a + b + 2 * c);
		printf("%.6lf\n", (1 - x) * b - c * x);
	}	
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值