Spark/Scala在推荐系统中实现相似度算法(欧氏距离、皮尔逊相关系数、余弦相似度:带实现代码)

在推荐系统中,协同过滤算法被广泛使用,主要分为基于用户和基于项目的协同过滤算法。核心点基于“一个人”或者“一个物品”。根据这个人或者物品的属性,比如性别、年龄、工作、收入、喜好等。,找到与此人或物品相似的人或物。当然,实际处理中的参考因素会复杂得多。

本文不介绍相关的数学概念,主要给出常用相似度算法的代码实现,同样的算法有多种实现方式。
欧几里得距离

def euclidean2(v1: Vector, v2: Vector): Double = {
    require(v1.size == v2.size, s"SimilarityAlgorithms:Vector dimensions do not match: Dim(v1)=${v1.size} and Dim(v2)" +
      s"=${v2.size}.")

    val x = v1.toArray
    val y = v2.toArray

    euclidean(x, y)
  }

  def euclidean(x: Array[Double], y: Array[Double]): Double = {
    require(x.length == y.length, s"SimilarityAlgorithms:Array length do not match: Len(x)=${x.length} and Len(y)" +
      s"=${y.length}.")

    math.sqrt(x.zip(y).map(p => p._1 - p._2).map(d => d * d).sum)
  }
  
  def euclidean(v1: Vector, v2: Vector): Double = {
    val sqdist = Vectors.sqdist(v1, v2)
    math.sqrt(sqdist)
  }

皮尔逊相关系数

def pearsonCorrelationSimilarity(arr1: Array[Double], arr2: Array[Double]): Double = {
    require(arr1.length == arr2.length, s"SimilarityAlgorithms:Array length do not match: Len(x)=${arr1.length} and Len(y)" +
      s"=${arr2.length}.")

    val sum_vec1 = arr1.sum
    val sum_vec2 = arr2.sum

    val square_sum_vec1 = arr1.map(x => x * x).sum
    val square_sum_vec2 = arr2.map(x => x * x).sum

    val zipVec = arr1.zip(arr2)

    val product = zipVec.map(x => x._1 * x._2).sum
    val numerator = product - (sum_vec1 * sum_vec2 / arr1.length)

    val dominator = math.pow((square_sum_vec1 - math.pow(sum_vec1, 2) / arr1.length) * (square_sum_vec2 - math.pow(sum_vec2, 2) / arr2.length), 0.5)
    if (dominator == 0) Double.NaN else numerator / (dominator * 1.0)
  }

余弦相似性

  def cosineSimilarity(v1: DoubleMatrix, v2: DoubleMatrix): Double = {
    require(x.length == y.length, s"SimilarityAlgorithms:Array length do not match: Len(v1)=${x.length} and Len(v2)" +
      s"=${y.length}.")
      
    v1.dot(v2) / (v1.norm2() * v2.norm2())
  }
  
def cosineSimilarity(v1: Vector, v2: Vector): Double = {
    require(v1.size == v2.size, s"SimilarityAlgorithms:Vector dimensions do not match: Dim(v1)=${v1.size} and Dim(v2)" +
      s"=${v2.size}.")

    val x = v1.toArray
    val y = v2.toArray

    cosineSimilarity(x, y)
  }

  
  def cosineSimilarity(x: Array[Double], y: Array[Double]): Double = {
    require(x.length == y.length, s"SimilarityAlgorithms:Array length do not match: Len(x)=${x.length} and Len(y)" +
      s"=${y.length}.")

    val member = x.zip(y).map(d => d._1 * d._2).sum
   
    val temp1 = math.sqrt(x.map(math.pow(_, 2)).sum)
    val temp2 = math.sqrt(y.map(math.pow(_, 2)).sum)

    val denominator = temp1 * temp2
    if (denominator == 0) Double.NaN else member / (denominator * 1.0)
  }

修正余弦相似性

def adjustedCosineSimJblas(x: DoubleMatrix, y: DoubleMatrix): Double = {
    require(x.length == y.length, s"SimilarityAlgorithms:DoubleMatrix length do not match: Len(x)=${x.length} and Len(y)" +
      s"=${y.length}.")

    val avg = (x.sum() + y.sum()) / (x.length + y.length)
    val v1 = x.sub(avg)
    val v2 = y.sub(avg)
    v1.dot(v2) / (v1.norm2() * v2.norm2())
  }

 
  def adjustedCosineSimJblas(x: Array[Double], y: Array[Double]): Double = {
    require(x.length == y.length, s"SimilarityAlgorithms:Array length do not match: Len(x)=${x.length} and Len(y)" +
      s"=${y.length}.")

    val v1 = new DoubleMatrix(x)
    val v2 = new DoubleMatrix(y)

    adjustedCosineSimJblas(v1, v2)
  }
  
  def adjustedCosineSimilarity(v1: Vector, v2: Vector): Double = {
    require(v1.size == v2.size, s"SimilarityAlgorithms:Vector dimensions do not match: Dim(v1)=${v1.size} and Dim(v2)" +
      s"=${v2.size}.")
    val x = v1.toArray
    val y = v2.toArray

    adjustedCosineSimilarity(x, y)
  }

  def adjustedCosineSimilarity(x: Array[Double], y: Array[Double]): Double = {
    require(x.length == y.length, s"SimilarityAlgorithms:Array length do not match: Len(x)=${x.length} and Len(y)" +
      s"=${y.length}.")

    val avg = (x.sum + y.sum) / (x.length + y.length)

    val member = x.map(_ - avg).zip(y.map(_ - avg)).map(d => d._1 * d._2).sum

    val temp1 = math.sqrt(x.map(num => math.pow(num - avg, 2)).sum)
    val temp2 = math.sqrt(y.map(num => math.pow(num - avg, 2)).sum)

    val denominator = temp1 * temp2
    if (denominator == 0) Double.NaN else member / (denominator * 1.0)
  }

如果在实际业务处理中有相关需求,可以根据实际场景对上述代码进行优化或转换。当然,很多算法框架提供的一些算法封装了这些相似度算法,底层还是依赖于这个集合,可以帮助你有更好的理解。比如Spark MLlib在KMeans算法中实现,欧氏距离在底部计算。

  • 2
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
本套大数据热门技术Spark+机器学习+贝叶斯算法系列课程,历经5年沉淀,调研企业上百家,通过上万学员汇总,保留较为完整的知识体系的同时,让每个模块看起来小而精,碎而不散。在本课程基于大量案例实战,深度剖析和讲解Spark2.4原理和新特性,且会包含完全从企业真实业务需求抽取出的案例实战。内容涵盖Spark核心编程、Spark SQL和Spark Streaming、Spark内核以及源码剖析、推荐系统、Kafka消费机制、Spark机器学习、朴素贝叶斯算法、企业级实战案例等。通过理论和实际的紧密结合,可以使学员对大数据Spark技术栈有充分的认识和理解,在项目实战Spark和流式处理应用的场景、以及大数据开发有更深刻的认识;并且通过对流处理原理的学习和与批处理架构的对比,可以对大数据处理架构有更全面的了解,为日后成长为架构师打下基础。本套教程可以让学员熟练掌握Spark技术栈,提升自己的职场竞争力,实现更好的升职或者跳槽,或者从J2EE等传统软件开发工程师转型为Spark大数据开发工程师,或是对于正在从事Hadoop大数据开发的朋友可以拓宽自己的技术能力栈,提升自己的价值。Spark应用场景Yahoo将Spark用在Audience Expansion的应用,进行点击预测和即席查询等。淘宝技术团队使用了Spark来解决多次迭代的机器学习算法、高计算复杂度的算法等。应用于内容推荐、社区发现等。腾讯大数据精准推荐借助Spark快速迭代的优势,实现了在“数据实时采集、算法实时训练、系统实时预测”的全流程实时并行高维算法,最终成功应用于广点通pCTR投放系统上。优酷土豆将Spark应用于视频推荐(图计算)、广告业务,主要实现机器学习、图计算等迭代计算。本套大数据热门技术Spark+机器学习+贝叶斯算法共计13季,本套为第12季。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值