题意:顺时针顺序给定一个
N
个点的凸多边形,问是否能用一条线段将其分成一个
分析:通过观察我们可以发现,存在解的情况只有三种 :
1.N+2=M+K。
2.N+3=M+K。
3.N+4=M+K。
如果不是上述三种情况直接输出
−1
如果是第一种情况,说明线段两个端点都在多边形的顶点上,直接遍历所有顶点,我们可以通过一个点确定另一个端点。计算两点间距离取最小值即可.
如果是第二种情况,说明线段两个端点一个在顶点上,另一个在一条边上。同样的,我们还是遍历所有顶点,确定一个点可以从两个方向获得两条边,做两次点到线段距离取最小值。
如果是第三种情况,说明线段两个端点分别在两条边上,我们遍历每个顶点,获取两条边。两条边之间的最短距离通过4次点到线段最短距离得到。
以下是代码:
#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define ull unsigned long long
#define lson l,mid,id<<1
#define rson mid+1,r,id<<1|1
typedef pair<int, int>pii;
const int INF = 0x3f3f3f3f;
const int MAXN = 3010;
const int MAXM = 100005;
const ll MOD = 998244353;
const int maxn = 205 + 100;
const double eps = 1e-8;
const double PI = acos(-1.0);
int sgn(double x)
{
if (fabs(x) < eps)return 0;
if (x < 0)return -1;
else return 1;
}
struct Point
{
double x, y;
Point() {}
Point(double _x, double _y)
{
x = _x; y = _y;
}
Point operator -(const Point &b)const
{
return Point(x - b.x, y - b.y);
}
//叉积
double operator ^(const Point &b)const
{
return x*b.y - y*b.x;
}
//点积
double operator *(const Point &b)const
{
return x*b.x + y*b.y;
}
//绕原点旋转角度B(弧度值),后x,y的变化
void transXY(double B)
{
double tx = x, ty = y;
x = tx*cos(B) - ty*sin(B);
y = tx*sin(B) + ty*cos(B);
}
}poo[105];
double dist(Point a, Point b)
{
return sqrt((a - b)*(a - b));
}
struct Line
{
Point s, e;
Line() {}
Line(Point _s, Point _e)
{
s = _s; e = _e;
}
//两直线相交求交点
//第一个值为0表示直线重合,为1表示平行,为0表示相交,为2是相交
//只有第一个值为2时,交点才有意义
pair<int, Point> operator &(const Line &b)const
{
Point res = s;
if (sgn((s - e) ^ (b.s - b.e)) == 0)
{
if (sgn((s - b.e) ^ (b.s - b.e)) == 0)
return make_pair(0, res);//重合
else return make_pair(1, res);//平行
}
double t = ((s - b.s) ^ (b.s - b.e)) / ((s - e) ^ (b.s - b.e));
res.x += (e.x - s.x)*t;
res.y += (e.y - s.y)*t;
return make_pair(2, res);
}
};
Point NearestPointToLineSeg(Point P, Line L)
{
Point result;
double t = ((P - L.s)*(L.e - L.s)) / ((L.e - L.s)*(L.e - L.s));
if (t >= 0 && t <= 1)
{
result.x = L.s.x + (L.e.x - L.s.x)*t;
result.y = L.s.y + (L.e.y - L.s.y)*t;
}
else
{
if (dist(P, L.s) < dist(P, L.e))
result = L.s;
else result = L.e;
}
return result;
}
int main() {
freopen("input.txt", "r", stdin);
freopen("output.txt", "w", stdout);
int n, m, k;
scanf("%d%d%d", &n, &m, &k);
for (int i = 0; i < n; ++i) {
scanf("%lf%lf", &poo[i].x, &poo[i].y);
}
double ans = 1e10;
if (n + 2 == m + k) {
for (int i = 0; i < n; ++i) {
int now = (i + m - 1) % n;
ans = min(ans, dist(poo[i], poo[now]));
}
printf("%.3f\n", ans);
}
else if (n + 3 == m + k) {
for (int i = 0; i < n; ++i) {
int now1 = (i + m - 1 + n) % n, now2 = (i + m - 2 + n) % n;
Line L = Line(poo[now2], poo[now1]);
Line L2 = Line(poo[i], poo[(i + 1) % n]);
ans = min(ans, dist(poo[i], NearestPointToLineSeg(poo[i], L)));
ans = min(ans, dist(poo[now1], NearestPointToLineSeg(poo[now1], L2)));
}
printf("%.3f\n", ans);
}
else if (n + 4 == m + k) {
for (int i = 0; i < n; ++i) {
int a = i, b = (i + 1) % n, c = (i + m - 1 + n) % n, d = (i + m - 2 + n) % n;
ans = min(ans, dist(poo[a], NearestPointToLineSeg(poo[a], Line(poo[c], poo[d]))));
ans = min(ans, dist(poo[b], NearestPointToLineSeg(poo[b], Line(poo[c], poo[d]))));
ans = min(ans, dist(poo[c], NearestPointToLineSeg(poo[c], Line(poo[a], poo[b]))));
ans = min(ans, dist(poo[d], NearestPointToLineSeg(poo[d], Line(poo[a], poo[b]))));
}
printf("%.3f\n", ans);
}
else printf("-1\n");
}