题意:有一些五颜六色的珠子,可以按一定的规则串起来:每颗珠子的两半可以是不同的颜色,相邻珠子接触的地方颜色要相同。现在给出N颗珠子及其两半的颜色,问是否可以组成一串,若是则按串的顺序输出。颜色由数字表示,且范围在1到50之间。
解法:将每种颜色作为点,每颗珠子作为边来构图,之后在这个图中找出欧拉回路即为结果。注意图中可能有重边。(似乎应该判断图联通?)
#include<bits/stdc++.h>
using namespace std;
typedef pair<int,int> pii;
const int maxn = 55;
int f[maxn][maxn];
int deg[maxn];
stack<pii>s;
void dfs(int u){
for(int i = 1; i <= 50; ++i){
if(f[u][i]){
f[u][i]--, f[i][u]--; //处理重边
dfs(i);
s.push(pii{u,i});
}
}
}
int main(){
int t, ca = 0;
scanf("%d",&t);
while(t--){
while(!s.empty()) s.pop();
memset(deg,0,sizeof(deg));
memset(f,0,sizeof(f));
int n;
scanf("%d",&n);
int u,v;
for(int i = 1; i <= n; ++i){
scanf("%d%d",&u,&v);
f[u][v]++, f[v][u]++;
deg[u]++, deg[v]++;
}
bool flag = 0;
for(int i = 1; i <= 50; ++i){
if(deg[i] & 1){ //判断无向图构成欧拉路的条件:每个点的度数均为偶数
flag = 1;
break;
}
}
if(ca) puts("");
printf("Case #%d\n",++ca);
if(flag){
printf("some beads may be lost\n");
}
else {
dfs(u);
while(!s.empty()){
pii temp = s.top();s.pop();
printf("%d %d\n",temp.first,temp.second);
}
}
}
return 0;
}