Macdown 使用说明

Macdown 使用说明

这是一篇方便我查找自己常用功能的说明

下载

macdown是一款对MAC OS系统开源的markdown编辑器,可以直接去官网下载

或者用homebrew命令安装

brew install --cask macdown

但是我在安装过程中遇到了如下提示

macOS cannot verify that this app is free from malware.

查找了一些资料,只是由于 macOS 的 Gatekeeper 安全功能无法验证该应用程序的来源或完整性,使用网上的其他解决方式均不成功,最终短暂的关闭了Gatekeeper

sudo spctl --master-disable

打开后又重新启用Gatekeeper

sudo spctl --master-enable

使用

Macdown遵循所有的markdown语法,还自带一些其他的功能,如果在使用遇到问题,请查阅Macdown Help的文档

macdownhelp

换行

  • 在markwon中,打字的时候
    换行
    并不意味着显示的时候会换行,如果想要强制换行,在上一行的结尾必须要打两个空格
    这样就会换行啦!

我个人习惯通过空一行来实现换行

这样也行哦~

分级

通过#的个数来确定分级,#越多,等级越低

也可以直接在上方(panel)点击H1 H2 H3分别对应各个等级

列表

点列表:

  • 每行以*开头,就形成了一个点列表
  • -开头也行
  • 真漂亮,好事成三,让我再打一行废话

数字列表:

  1. 每行开头打数字就行啦
  2. 点和文字之间要空一格
  3. 具体是什么数字不要紧,实际生成列表的时候会按照数字顺序生成

多级列表:

  1. 这是第一级
    2. Tab, 这是第二级别(第一行行末尾有四个空格)
    3. 这是第二级
  2. 回到第一级
    3. 啦啦啦,又到第二级,乱标序号的我
  3. 还在吗?

分隔符

可以用***或者是---打出分割线


Cinder Girl:
You left, and should you reappear,
I’ve vowed to shun you. Now I fear
the very thing for which I yearn –
one touch. . . and then again.
– to burn


表格

基本的表格绘制就是用|来分割横向单元格,用----来分划表格内容和表头,分割线用多无所谓,不能少于三条线


First Head  | Second Head
----------- | -----------
Me          | python
Cindergirl  | cpp
First HeadSecond Head
Mepython
Cindergirlcpp

如果想要调整单元格里面的文字排版,如居中对齐,考右对齐,可以用引号实现

| 左对齐   | 居中对齐 | 右对齐 |
|:---------|:-------:|-------:|
| 1        | alpha   |   1024 |
| 2        | beta    |   2048 |
| 3        | gamma   |   4096 |
左对齐居中对齐右对齐
1alpha1024
2beta2048
3gamma4096

标记强调

标粗强调:__The thing you want to emphsize__

标粗强调:**The thing you want to emphsize**

斜体强调:*Emphasize*

操作标记显示效果
倾斜单词内字母So A*maz*ingSo Amazing
划线~~Much wow~~~Much wow~
下滑线]_So doge_So doge
引用“Such editor”‘‘Such editor’’
荧光标记==So good==So good
上标hoge^™hoge^™

插入引用

代码引用

行内引用

在一行内打简短的代码: for i in range(0,100):
可以这样写`for i in range(0,100):`

块引用

这是一段代码:

a = 520
for i in range(999):
	print("I love MATH")
for i in range(-1):
	print("MATH love me")

~~~写可以触发macdown的渲染
但是也可以用块引用,通过空四格来实现

a = 520 
for i in range(999):  
    print("I love MATH")
for i in range(-1):
    print("MATH love me")
#include <iostream>
using namespace std;

int main() {
    cout << "Hello, World!" << endl;
    return 0;
}

角标

直接在一个句子的末尾打上[^1]就可以了 e.g 这是一个带有脚注的句子 1
最后角标会写在pdf本页的末尾,序号什么的不重要,会自动排序2
markdown 会根据角标出现顺序自动排序,但是角标的序号需要和内容对应

网页超链接

直接用尖括号把网页给扩起来就行啦 e.g This is my favorite website https://www.bilibili.com/

如果想给个超链接的话就这样写[想要显示的名字](url):This is my favorite website

邮箱也是同理 e.g This is my email 2333333333@qq.com

文本引用

>来表示块引用

如同麻雀 As the Sparrow
查尔斯·布考斯基 Charles Bukowski
亲爱的孩子,
我对你所为如同麻雀
流行年轻时,
我老去
流行微笑时,
我哭泣
在爱无需那么多勇气时,
我却恨你

分行效果是通过行末尾加两个空格实现的,如果想通过空格分行,必须每行前面都要打>才能实现块引用

在块引用内部也可以建立列表,插入超链接

图片引用

本地文件:

![图片代替显示名](路径)
拷贝文件路径的快捷键 Comond + Option + C

网络文件

![图片代替显示名](url "optional title")
e.g ![memory](https://img-home.csdnimg.cn/images/20230724024159.png?origin_url=https%3A%2F%2Fimgur.com%2FyBocSeF.jpg&pos_id=img-aEKToI9y-1736393098107) "memory")

可以把图片上传到imgur这个网站上

  1. New post, Drop image into the webpage
  2. Copy Url
  3. Don’t forget to specify the format of image otherwise it may not be able to display
设置图片

markdown不能直接设置图片格式,需要使用HTML来辅助/配置CSS文件,格式为:

markdown
<img src="图片的链接或本地路径" alt="图片描述" width="300" height="200">

数学公式(Latex)

公式的基本格式

行内公式$ $用两个个$包裹 e.g $ x + y = z$

行间公式$$ $$用两个$$包裹 e.g
E = m i l k × c o f f e e 2 E = {milk} \times {coffee}^2 E=milk×coffee2

多行公式 用\begin{align*}\end{align*}包裹,公式会按照&对齐

$$
 \begin{aligned}
f(x) &= x^2 + 2x + 1 \\
     &= (x + 1)^2
\end{aligned}
$$

f ( x ) = x 2 + 2 x + 1 = ( x + 1 ) 2 \begin{aligned} f(x) &= x^2 + 2x + 1 \\ &= (x + 1)^2 \end{aligned} f(x)=x2+2x+1=(x+1)2

分段函数 用\begin{cases}\end{cases}包裹,分行用&实现条件对齐

$$
f(x) = 
\begin{cases}
x^2 & \text{如果 } x \geq 0 \\
-x^2 & \text{如果 } x < 0
\end{cases}
$$

f ( x ) = { x 2 如果  x ≥ 0 − x 2 如果  x < 0 f(x) = \begin{cases} x^2 & \text{如果 } x \geq 0 \\ -x^2 & \text{如果 } x < 0 \end{cases} f(x)={x2x2如果 x0如果 x<0

常用数学符号

角标
  • 上标: ^ e.g $ my \space idea^{TM}$
  • 下标: _
$x^2 + y_1 = z^{n+1}$

x 2 + y 1 = z n + 1 x^2 + y_1 = z^{n+1} x2+y1=zn+1

分式

使用\frac{分子}{分母} e.g 24 67656 \frac{24}{67656} 6765624

$\frac{24}{67656}$
运算符号
  • 不等号 \neq ¬ \neg ¬, \leq ≤ \leq , \geq ≥ \geq
  • 点乘差乘 \cdot, \times e.g $a \times b \neq a \cdot b$ a × b ≠ a ⋅ b a \times b \neq a \cdot b a×b=ab
  • 加减乘除 +, -, \times, \div
  • 箭头
    单箭头:\to → \to , \rightarrow → \rightarrow , \leftarrow ← \leftarrow
    双箭头:\Rightarrow ⇒ \Rightarrow , \Leftarrow ⇐ \Leftarrow
括号
  • 自动调整大小:用 \left\right 让括号根据内容自动调整大小

    $$
    f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left( -\frac{(x-\mu)^2}{2\sigma^2} \right)
    $$
    

    f ( x ) = 1 2 π σ 2 exp ⁡ ( − ( x − μ ) 2 2 σ 2 ) f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left( -\frac{(x-\mu)^2}{2\sigma^2} \right) f(x)=2πσ2 1exp(2σ2(xμ)2)

  • 手动调整大小:用 \big, \Big, \bigg, \Bigg 手动调整括号大小 规制是首字母越大些越大,g越多越大

$\Big( \bigg( \Bigg( \Bigg) \bigg) \Big)$

( ( ( ) ) ) \Big( \bigg( \Bigg( \Bigg) \bigg) \Big) ((()))

空格
  • 小空格:\,
  • 中空格:\:
  • 大空格:\;
$x \, y \: z \; w$

x   y   z    w x \, y \: z \; w xyzw

公式中的文本

\text{...}添加文本

$f(x) = x^2 \quad \text{(二次函数)}$

f ( x ) = x 2 (二次函数) f(x) = x^2 \quad \text{(二次函数)} f(x)=x2(二次函数)

美丽的希腊字母
希腊字母小写 LaTeX 公式及展示效果大写 LaTeX 公式及展示效果
Alpha\alpha α \alpha αA A A A
Beta\beta β \beta βB B B B
Gamma\gamma γ \gamma γ\Gamma Γ \Gamma Γ
Delta\delta δ \delta δ\Delta Δ \Delta Δ
Epsilon\epsilon ϵ \epsilon ϵE E E E
Zeta\zeta ζ \zeta ζZ Z Z Z
Eta\eta η \eta ηH H H H
Theta\theta θ \theta θ\Theta Θ \Theta Θ
Iota\iota ι \iota ιI I I I
Kappa\kappa κ \kappa κK K K K
Lambda\lambda λ \lambda λ\Lambda Λ \Lambda Λ
Mu\mu μ \mu μM M M M
Nu\nu ν \nu νN N N N
Xi\xi ξ \xi ξ\Xi Ξ \Xi Ξ
Omicron\omicron ο \omicron οO O O O
Pi\pi π \pi π\Pi Π \Pi Π
Rho\rho ρ \rho ρP P P P
Sigma\sigma σ \sigma σ\Sigma Σ \Sigma Σ
Tau\tau τ \tau τT T T T
Upsilon\upsilon υ \upsilon υ\Upsilon Υ \Upsilon Υ
Phi\phi ϕ \phi ϕ\Phi Φ \Phi Φ
Chi\chi χ \chi χX X X X
Psi\psi ψ \psi ψ\Psi Ψ \Psi Ψ
Omega\omega ω \omega ω\Omega Ω \Omega Ω

常见数学表达式

  • 根号 \sqrt{...} or 高次 \sqrt[n]{...} e.g x + y 3 \sqrt{x} + \sqrt[3]{y} x +3y

  • 微分
    '表示的微分:可以直接写 $f'(x)$ e.g f ′ ( x ) f'(x) f(x)
    更复杂的情况需要用\prime e.g $f^{\prime\prime\prime}(x)$ f ′ ′ ′ ( x ) f^{\prime\prime\prime}(x) f′′′(x)
    dy/dx表示的微分:用\mathrm{d} e.g $\frac{\mathrm{d}^2 y}{\mathrm{d} x^2}$ d 2 y d x 2 \frac{\mathrm{d}^2 y}{\mathrm{d} x^2} dx2d2y

  • 积分 \int_{下限}^{上限} ∫ − ∞ + ∞ e − x 2 d x = π \int_{-\infty}^{+\infty} e^{-x^2} \mathrm{d}x = \sqrt{\pi} +ex2dx=π

      $\int_{-\infty}^{+\infty} e^{-x^2} \mathrm{d}x = \sqrt{\pi}$
    
  • 求和 \sum_{下限}^{上限} e.g $\sum_{i=1}^n i = \frac{n(n+1)}{2}$ ∑ i = 1 n i = n ( n + 1 ) 2 \sum_{i=1}^n i = \frac{n(n+1)}{2} i=1ni=2n(n+1)

  • 极限 \lim_{变量 \to 值} e.g $\lim_{x \to +\infty} \frac{1}{x}= 0$ lim ⁡ x → + ∞ 1 x = 0 \lim_{x \to +\infty} \frac{1}{x} = 0 limx+x1=0

矩阵

  • 常用的矩阵:
    正交分解 $Q^T Q = I$ Q T Q = I Q^T Q = I QTQ=I
    对角化 A = P \Lambda P^{-1} A = P Λ P − 1 A = P \Lambda P^{-1} A=PΛP1 Λ \Lambda Λ 是对角矩阵,其对角线元素为特征值 λ 1 , λ 2 , … , λ n \lambda_1, \lambda_2, \dots, \lambda_n λ1,λ2,,λn

  • 表示矩阵:LaTeX 提供了多种矩阵环境,如 matrixbmatrixvmatrixVmatrix,分别用于不同的括号形式,矩阵元素用&分隔,换行用\\表示
    无括号矩阵:matrix
    a b c d \begin{matrix} a & b \\ c & d \end{matrix} acbd

    圆括号矩阵:pmatrix
    ( a b c d ) \begin{pmatrix} a & b \\ c & d \end{pmatrix} (acbd)

    方括号矩阵:bmatrix
    [ a b c d ] \begin{bmatrix} a & b \\ c & d \end{bmatrix} [acbd]

    单竖线矩阵(行列式):vmatrix
    ∣ a b c d ∣ \begin{vmatrix} a & b \\ c & d \end{vmatrix} acbd

    双竖线矩阵:Vmatrix
    ∥ a b c d ∥ \begin{Vmatrix} a & b \\ c & d \end{Vmatrix} acbd

    带有省略号的矩阵

    Λ = ( λ 1 0 ⋯ 0 0 λ 2 ⋯ 0 ⋮ ⋮ ⋱ ⋮ 0 0 ⋯ λ n ) \Lambda = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix} Λ= λ1000λ2000λn

     $$
    \Lambda = \begin{pmatrix}
    \lambda_1 & 0 & \cdots & 0 \\
    0 & \lambda_2 & \cdots & 0 \\
    \vdots & \vdots & \ddots & \vdots \\
    0 & 0 & \cdots & \lambda_n
    \end{pmatrix}
    $$
    
    命令方向用途
    \vdots垂直方向表示垂直方向上的省略号
    \ddots对角线方向表示对角线方向上的省略号
    \cdots水平方向表示水平方向上的省略号
  • 行列式 \det

    $$
    \det(A) = \begin{vmatrix}
    a & b \\
    c & d
    \end{vmatrix} = ad - bc
    $$
    

    det ⁡ ( A ) = ∣ a b c d ∣ = a d − b c \det(A) = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc det(A)= acbd =adbc

    高阶行列式

    det ⁡ ( A ) = ∣ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ∣ \det(A) = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} det(A)= a11a21a31a12a22a32a13a23a33


  1. 这是脚注的内容。 ↩︎

  2. I am cindergirl ↩︎

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值