Macdown 使用说明
这是一篇方便我查找自己常用功能的说明
下载
macdown是一款对MAC OS系统开源的markdown编辑器,可以直接去官网下载
或者用homebrew命令安装
brew install --cask macdown
但是我在安装过程中遇到了如下提示
macOS cannot verify that this app is free from malware.
查找了一些资料,只是由于 macOS 的 Gatekeeper 安全功能无法验证该应用程序的来源或完整性,使用网上的其他解决方式均不成功,最终短暂的关闭了Gatekeeper
sudo spctl --master-disable
打开后又重新启用Gatekeeper
sudo spctl --master-enable
使用
Macdown遵循所有的markdown语法,还自带一些其他的功能,如果在使用遇到问题,请查阅Macdown Help的文档
行
换行
- 在markwon中,打字的时候
换行
并不意味着显示的时候会换行,如果想要强制换行,在上一行的结尾必须要打两个空格
这样就会换行啦!
我个人习惯通过空一行来实现换行
这样也行哦~
分级
通过#
的个数来确定分级,#
越多,等级越低
也可以直接在上方(panel)点击H1 H2 H3分别对应各个等级
列表
点列表:
- 每行以
*
开头,就形成了一个点列表 - 以
-
开头也行 - 真漂亮,好事成三,让我再打一行废话
数字列表:
- 每行开头打数字就行啦
- 点和文字之间要空一格
- 具体是什么数字不要紧,实际生成列表的时候会按照数字顺序生成
多级列表:
- 这是第一级
2. Tab, 这是第二级别(第一行行末尾有四个空格)
3. 这是第二级 - 回到第一级
3. 啦啦啦,又到第二级,乱标序号的我 - 还在吗?
分隔符
可以用***
或者是---
打出分割线
Cinder Girl:
You left, and should you reappear,
I’ve vowed to shun you. Now I fear
the very thing for which I yearn –
one touch. . . and then again.
– to burn
表格
基本的表格绘制就是用|
来分割横向单元格,用----
来分划表格内容和表头,分割线用多无所谓,不能少于三条线
First Head | Second Head
----------- | -----------
Me | python
Cindergirl | cpp
First Head | Second Head |
---|---|
Me | python |
Cindergirl | cpp |
如果想要调整单元格里面的文字排版,如居中对齐,考右对齐,可以用引号实现
| 左对齐 | 居中对齐 | 右对齐 |
|:---------|:-------:|-------:|
| 1 | alpha | 1024 |
| 2 | beta | 2048 |
| 3 | gamma | 4096 |
左对齐 | 居中对齐 | 右对齐 |
---|---|---|
1 | alpha | 1024 |
2 | beta | 2048 |
3 | gamma | 4096 |
标记强调
标粗强调:__The thing you want to emphsize__
标粗强调:**The thing you want to emphsize**
斜体强调:*Emphasize*
操作 | 标记 | 显示效果 |
---|---|---|
倾斜单词内字母 | So A*maz*ing | So Amazing |
划线 | ~~Much wow~~ | ~Much wow~ |
下滑线] | _So doge_ | So doge |
引用 | “Such editor” | ‘‘Such editor’’ |
荧光标记 | ==So good== | So good |
上标 | hoge^™ | hoge^™ |
插入引用
代码引用
行内引用
在一行内打简短的代码: for i in range(0,100):
可以这样写`for i in range(0,100):`
块引用
这是一段代码:
a = 520
for i in range(999):
print("I love MATH")
for i in range(-1):
print("MATH love me")
用~~~
写可以触发macdown的渲染
但是也可以用块引用,通过空四格来实现
a = 520
for i in range(999):
print("I love MATH")
for i in range(-1):
print("MATH love me")
#include <iostream>
using namespace std;
int main() {
cout << "Hello, World!" << endl;
return 0;
}
角标
直接在一个句子的末尾打上[^1]
就可以了 e.g 这是一个带有脚注的句子 1
最后角标会写在pdf本页的末尾,序号什么的不重要,会自动排序2
markdown 会根据角标出现顺序自动排序,但是角标的序号需要和内容对应
网页超链接
直接用尖括号把网页给扩起来就行啦 e.g This is my favorite website https://www.bilibili.com/
如果想给个超链接的话就这样写[想要显示的名字](url)
:This is my favorite website
邮箱也是同理 e.g This is my email 2333333333@qq.com
文本引用
用 >
来表示块引用
如同麻雀 As the Sparrow
查尔斯·布考斯基 Charles Bukowski
亲爱的孩子,
我对你所为如同麻雀
流行年轻时,
我老去
流行微笑时,
我哭泣
在爱无需那么多勇气时,
我却恨你
分行效果是通过行末尾加两个空格实现的,如果想通过空格分行,必须每行前面都要打>
才能实现块引用
在块引用内部也可以建立列表,插入超链接
图片引用
本地文件:

拷贝文件路径的快捷键 Comond + Option + C
网络文件

e.g  "memory")
可以把图片上传到imgur这个网站上
- New post, Drop image into the webpage
- Copy Url
- Don’t forget to specify the format of image otherwise it may not be able to display
设置图片
markdown不能直接设置图片格式,需要使用HTML来辅助/配置CSS文件,格式为:
markdown
<img src="图片的链接或本地路径" alt="图片描述" width="300" height="200">
数学公式(Latex)
公式的基本格式
行内公式$ $
用两个个$
包裹 e.g $ x + y = z$
行间公式$$ $$
用两个$$
包裹 e.g
E
=
m
i
l
k
×
c
o
f
f
e
e
2
E = {milk} \times {coffee}^2
E=milk×coffee2
多行公式 用\begin{align*}
和 \end{align*}
包裹,公式会按照&
对齐
$$
\begin{aligned}
f(x) &= x^2 + 2x + 1 \\
&= (x + 1)^2
\end{aligned}
$$
f ( x ) = x 2 + 2 x + 1 = ( x + 1 ) 2 \begin{aligned} f(x) &= x^2 + 2x + 1 \\ &= (x + 1)^2 \end{aligned} f(x)=x2+2x+1=(x+1)2
分段函数 用\begin{cases}
和\end{cases}
包裹,分行用&
实现条件对齐
$$
f(x) =
\begin{cases}
x^2 & \text{如果 } x \geq 0 \\
-x^2 & \text{如果 } x < 0
\end{cases}
$$
f ( x ) = { x 2 如果 x ≥ 0 − x 2 如果 x < 0 f(x) = \begin{cases} x^2 & \text{如果 } x \geq 0 \\ -x^2 & \text{如果 } x < 0 \end{cases} f(x)={x2−x2如果 x≥0如果 x<0
常用数学符号
角标
- 上标:
^
e.g $ my \space idea^{TM}$ - 下标:
_
$x^2 + y_1 = z^{n+1}$
x 2 + y 1 = z n + 1 x^2 + y_1 = z^{n+1} x2+y1=zn+1
分式
使用\frac{分子}{分母}
e.g
24
67656
\frac{24}{67656}
6765624
$\frac{24}{67656}$
运算符号
- 不等号
\neq
¬ \neg ¬,\leq
≤ \leq ≤,\geq
≥ \geq ≥ - 点乘差乘
\cdot
,\times
e.g$a \times b \neq a \cdot b$
a × b ≠ a ⋅ b a \times b \neq a \cdot b a×b=a⋅b - 加减乘除
+
,-,
\times
,\div
- 箭头
单箭头:\to
→ \to →,\rightarrow
→ \rightarrow →,\leftarrow
← \leftarrow ←
双箭头:\Rightarrow
⇒ \Rightarrow ⇒,\Leftarrow
⇐ \Leftarrow ⇐
括号
-
自动调整大小:用
\left
和\right
让括号根据内容自动调整大小$$ f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left( -\frac{(x-\mu)^2}{2\sigma^2} \right) $$
f ( x ) = 1 2 π σ 2 exp ( − ( x − μ ) 2 2 σ 2 ) f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left( -\frac{(x-\mu)^2}{2\sigma^2} \right) f(x)=2πσ21exp(−2σ2(x−μ)2)
-
手动调整大小:用
\big
,\Big
,\bigg
,\Bigg
手动调整括号大小 规制是首字母越大些越大,g越多越大
$\Big( \bigg( \Bigg( \Bigg) \bigg) \Big)$
( ( ( ) ) ) \Big( \bigg( \Bigg( \Bigg) \bigg) \Big) ((()))
空格
- 小空格:
\,
- 中空格:
\:
- 大空格:
\;
$x \, y \: z \; w$
x y z w x \, y \: z \; w xyzw
公式中的文本
用 \text{...}
添加文本
$f(x) = x^2 \quad \text{(二次函数)}$
f ( x ) = x 2 (二次函数) f(x) = x^2 \quad \text{(二次函数)} f(x)=x2(二次函数)
美丽的希腊字母
希腊字母 | 小写 LaTeX 公式及展示效果 | 大写 LaTeX 公式及展示效果 |
---|---|---|
Alpha | \alpha :
α
\alpha
α | A :
A
A
A |
Beta | \beta :
β
\beta
β | B :
B
B
B |
Gamma | \gamma :
γ
\gamma
γ | \Gamma :
Γ
\Gamma
Γ |
Delta | \delta :
δ
\delta
δ | \Delta :
Δ
\Delta
Δ |
Epsilon | \epsilon :
ϵ
\epsilon
ϵ | E :
E
E
E |
Zeta | \zeta :
ζ
\zeta
ζ | Z :
Z
Z
Z |
Eta | \eta :
η
\eta
η | H :
H
H
H |
Theta | \theta :
θ
\theta
θ | \Theta :
Θ
\Theta
Θ |
Iota | \iota :
ι
\iota
ι | I :
I
I
I |
Kappa | \kappa :
κ
\kappa
κ | K :
K
K
K |
Lambda | \lambda :
λ
\lambda
λ | \Lambda :
Λ
\Lambda
Λ |
Mu | \mu :
μ
\mu
μ | M :
M
M
M |
Nu | \nu :
ν
\nu
ν | N :
N
N
N |
Xi | \xi :
ξ
\xi
ξ | \Xi :
Ξ
\Xi
Ξ |
Omicron | \omicron :
ο
\omicron
ο | O :
O
O
O |
Pi | \pi :
π
\pi
π | \Pi :
Π
\Pi
Π |
Rho | \rho :
ρ
\rho
ρ | P :
P
P
P |
Sigma | \sigma :
σ
\sigma
σ | \Sigma :
Σ
\Sigma
Σ |
Tau | \tau :
τ
\tau
τ | T :
T
T
T |
Upsilon | \upsilon :
υ
\upsilon
υ | \Upsilon :
Υ
\Upsilon
Υ |
Phi | \phi :
ϕ
\phi
ϕ | \Phi :
Φ
\Phi
Φ |
Chi | \chi :
χ
\chi
χ | X :
X
X
X |
Psi | \psi :
ψ
\psi
ψ | \Psi :
Ψ
\Psi
Ψ |
Omega | \omega :
ω
\omega
ω | \Omega :
Ω
\Omega
Ω |
常见数学表达式
-
根号
\sqrt{...}
or 高次\sqrt[n]{...}
e.g x + y 3 \sqrt{x} + \sqrt[3]{y} x+3y -
微分
用'
表示的微分:可以直接写$f'(x)$
e.g f ′ ( x ) f'(x) f′(x)
更复杂的情况需要用\prime
e.g$f^{\prime\prime\prime}(x)$
f ′ ′ ′ ( x ) f^{\prime\prime\prime}(x) f′′′(x)
用dy/dx
表示的微分:用\mathrm{d}
e.g$\frac{\mathrm{d}^2 y}{\mathrm{d} x^2}$
d 2 y d x 2 \frac{\mathrm{d}^2 y}{\mathrm{d} x^2} dx2d2y -
积分
\int_{下限}^{上限}
∫ − ∞ + ∞ e − x 2 d x = π \int_{-\infty}^{+\infty} e^{-x^2} \mathrm{d}x = \sqrt{\pi} ∫−∞+∞e−x2dx=π$\int_{-\infty}^{+\infty} e^{-x^2} \mathrm{d}x = \sqrt{\pi}$
-
求和
\sum_{下限}^{上限}
e.g$\sum_{i=1}^n i = \frac{n(n+1)}{2}$
∑ i = 1 n i = n ( n + 1 ) 2 \sum_{i=1}^n i = \frac{n(n+1)}{2} ∑i=1ni=2n(n+1) -
极限
\lim_{变量 \to 值}
e.g$\lim_{x \to +\infty} \frac{1}{x}= 0$
lim x → + ∞ 1 x = 0 \lim_{x \to +\infty} \frac{1}{x} = 0 limx→+∞x1=0
矩阵
-
常用的矩阵:
正交分解$Q^T Q = I$
Q T Q = I Q^T Q = I QTQ=I
对角化A = P \Lambda P^{-1}
A = P Λ P − 1 A = P \Lambda P^{-1} A=PΛP−1 Λ \Lambda Λ 是对角矩阵,其对角线元素为特征值 λ 1 , λ 2 , … , λ n \lambda_1, \lambda_2, \dots, \lambda_n λ1,λ2,…,λn -
表示矩阵:LaTeX 提供了多种矩阵环境,如
matrix
、bmatrix
、vmatrix
和Vmatrix
,分别用于不同的括号形式,矩阵元素用&
分隔,换行用\\
表示
无括号矩阵:matrix
a b c d \begin{matrix} a & b \\ c & d \end{matrix} acbd圆括号矩阵:
pmatrix
( a b c d ) \begin{pmatrix} a & b \\ c & d \end{pmatrix} (acbd)方括号矩阵:
bmatrix
[ a b c d ] \begin{bmatrix} a & b \\ c & d \end{bmatrix} [acbd]单竖线矩阵(行列式):
vmatrix
∣ a b c d ∣ \begin{vmatrix} a & b \\ c & d \end{vmatrix} acbd 双竖线矩阵:
Vmatrix
∥ a b c d ∥ \begin{Vmatrix} a & b \\ c & d \end{Vmatrix} acbd 带有省略号的矩阵
Λ = ( λ 1 0 ⋯ 0 0 λ 2 ⋯ 0 ⋮ ⋮ ⋱ ⋮ 0 0 ⋯ λ n ) \Lambda = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix} Λ= λ10⋮00λ2⋮0⋯⋯⋱⋯00⋮λn
$$ \Lambda = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix} $$
命令 方向 用途 \vdots
垂直方向 表示垂直方向上的省略号 \ddots
对角线方向 表示对角线方向上的省略号 \cdots
水平方向 表示水平方向上的省略号 -
行列式
\det
$$ \det(A) = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc $$
det ( A ) = ∣ a b c d ∣ = a d − b c \det(A) = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc det(A)= acbd =ad−bc
高阶行列式
det ( A ) = ∣ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ∣ \det(A) = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} det(A)= a11a21a31a12a22a32a13a23a33