- 博客(3)
- 收藏
- 关注
原创 逻辑回归交叉熵损失函数梯度推导过程
逻辑回归交叉熵损失函数梯度推导过程问题描述推导过程问题描述对逻辑回归交叉熵损失函数J(θ)=−∑i=1m[yilnyi^+(1−yi)ln(1−yi^)]J(\bm{\theta})=-\sum_{i=1}^{m}\left[y_i\ln\hat{y_i}+(1-y_i)\ln\left(1-\hat{y_i}\right)\right]J(θ)=−i=1∑m[yilnyi^+(1−yi)ln(1−yi^)]求梯度,其中 mmm 为样本个数,yiy_iyi 为第 iii 个样本的
2020-10-27 14:00:13 1838 1
原创 最小二乘法正规方程推导过程
最小二乘法正规方程推导过程线性回归岭回归:添加 L2L_2L2 正则项输入样本 X∈Rm×n\textbf{X}\in \mathbb{R}^{m\times n}X∈Rm×n,输出 y∈Rm×1\textbf{y}\in\mathbb{R}^{m\times 1}y∈Rm×1,需要学习的参数 w∈Rn×1\textbf{w}\in \mathbb{R}^{n\times 1}w∈Rn×1。其中,mmm 为样本个数,nnn 为单个样本维度。线性回归最小化目标函数J(w)=12∥y−Xw∥22J(\
2020-10-26 21:53:09 9965
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人