题目:
时间限制:
10000ms
单点时限:
1000ms
内存限制:
256MB
- 校园网主干是由N个节点(编号1..N)组成,这些节点之间有一些单向的网路连接。若存在一条网路连接(u,v)链接了节点u和节点v,则节点u可以向节点v发送信息,但是节点v不能通过该链接向节点u发送信息。
- 在刚感染病毒时,校园网立刻切断了一些网络链接,恰好使得剩下网络连接不存在环,避免了节点被反复感染。也就是说从节点i扩散出的病毒,一定不会再回到节点i。
- 当1个病毒感染了节点后,它并不会检查这个节点是否被感染,而是直接将自身的拷贝向所有邻居节点发送,它自身则会留在当前节点。所以一个节点有可能存在多个病毒。
- 现在已经知道黑客在一开始在K个节点上分别投放了一个病毒。
-
4 4 1 1 1 2 1 3 2 3 3 4
样例输出
-
6
描述
小Hi和小Ho所在学校的校园网被黑客入侵并投放了病毒。这事在校内BBS上立刻引起了大家的讨论,当然小Hi和小Ho也参与到了其中。从大家各自了解的情况中,小Hi和小Ho整理得到了以下的信息:
举个例子,假设切断部分网络连接后学校网络如下图所示,由4个节点和4条链接构成。最开始只有节点1上有病毒。
最开始节点1向节点2和节点3传送了病毒,自身留有1个病毒:
其中一个病毒到达节点2后,向节点3传送了一个病毒。另一个到达节点3的病毒向节点4发送自己的拷贝:
当从节点2传送到节点3的病毒到达之后,该病毒又发送了一份自己的拷贝向节点4。此时节点3上留有2个病毒:
最后每个节点上的病毒为:
小Hi和小Ho根据目前的情况发现一段时间之后,所有的节点病毒数量一定不会再发生变化。那么对于整个网络来说,最后会有多少个病毒呢?
输入
第1行:3个整数N,M,K,1≤K≤N≤100,000,1≤M≤500,000
第2行:K个整数A[i],A[i]表示黑客在节点A[i]上放了1个病毒。1≤A[i]≤N
第3..M+2行:每行2个整数 u,v,表示存在一条从节点u到节点v的网络链接。数据保证为无环图。1≤u,v≤N
输出
第1行:1个整数,表示最后整个网络的病毒数量 MOD 142857
拓扑排序最简单的运用,题目中已经提示了在求和的过程中求一个结点接着删除一个结点,里面最容易忽视的就是对MOD的处理,每一次求和都要MOD,否则会溢出
AC代码:
#include<stdio.h>
#include<iostream>
#include<string.h>
#include<vector>
#include<queue>
#define dom 142857
#define M 500000+10
using namespace std;
vector<int> G[M];
int A[M];
int in[M];
int u,v;
int n,m,k,l;
queue<int> Q;
int sum;
int main()
{
while(~scanf("%d%d%d",&n,&m,&k))
{
sum=0;
memset(in,0,sizeof(in));
memset(A,0,sizeof(A));
for(int i=0;i<k;i++)
{
scanf("%d",&l);
A[l]=1;
}
for(int i=0;i<n;i++)
G[i].clear();
for(int i=0;i<m;i++)
{
scanf("%d%d",&u,&v);
G[u].push_back(v);
in[v]++;
}
for(int i=0;i<n;i++)
if(!in[i])
Q.push(i);
while(!Q.empty())
{
int u=Q.front();
Q.pop();
sum = (sum+A[u])%dom;
for(int j=0;j<G[u].size();j++)
{
int v=G[u][j];
A[v]=(A[v]+A[u])%dom;
if(--in[v]==0)
Q.push(v);
}
}
printf("%d\n",sum);
}
return 0;
}