特征选择 (Sequentialfs Function)

特征选择,也称为独立评估法,通过评分和排序选择最优特征子集,以降低计算开销和提升分类性能。Sequentialfs 是 MATLAB 中用于此目的的函数,它通过10折交叉验证逐步选择特征,直到预测性能不再提升。该函数涉及特征提取和选择,用于三分类问题的 backward 和 forward 方法得到不同结果,但都旨在优化预测精度。
摘要由CSDN通过智能技术生成

特征选择 (Sequentialfs Function)

什么是特征选择

特征选择是指从一组给定的特征集中,按照某一准则选择出一组具有良好区分特性的特征子集。特征选择又称独立评估法,在进行特征选择时一般都是利用某种评价函数独立地对每个原始特征项进行评分,然后将它们按分值的高低排序,从中选取若干个分值最高的特征项。
特征选择实际包含两个方面:特征提取和特征选择。特征提取是一种将数据从高维空间到低维空间的变换,达到降维的目的;特征选择是指从一组特征中去除冗余或不相关的特征来降维。两者常联合使用。 特征选择的作用主要是降低计算开销和提高分类性能。即可以减小数据处理量、节省处理时间,减轻数据中噪声的影响,提高信息处理系统的性能。

  	良好的特征集一般具有以下几个特点:可区分性、可靠性、独立性、数量少。

	特征选择的基本方法为:先产生特征子集(选择算法),然后对子集进行评价(评价标准)。

    特征子集的形成方法有:穷举法、启发法、随机法。

Example of MATLAB Function

  	inmodel = sequentialfs(fun,X,y)

It will select a subset of features from the data matrix X that best predict the data in y by sequentially selecting features until there is no improvement in prediction.
这个函数是用来有序的选择features直到预测不会再有提高。这里值得注意的是sequentially. 在之后会对特征提取有一定的影响。
Rows of X correspond to observations.
Columns correspond to variables or features.
这里的行列需要认真确认,行是观测值,列对应着不同的features
y is a column vector of response values or class labels for each observation in

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值