搭建TensorFlow环境

转载自:“我爱自然语言处理”:http://www.52nlp.cn

安装CUDA9.x

注:如果还需要安装Tensorflow1.8,建议这里安装CUDA9.0,我在另一台机器上遇到了一点问题,怀疑和我这台机器先安装CUDA9.0,再安装CUDA9.2有关。

依然从英伟达官方下载当前的CUDA版本,我选择了最新的CUDA9.2:

点选完对应Ubuntu16.04的CUDA9.2 deb版本之后,英伟达官方主页会给出安装提示:

Installation Instructions:
`sudo dpkg -i cuda-repo-ubuntu1604-9-2-local_9.2.88-1_amd64.deb`
`sudo apt-key add /var/cuda-repo-/7fa2af80.pub`
`sudo apt-get update`
`sudo apt-get install cuda`

在下载完大概1.2G的cuda deb版本之后,实际安装命令是这样的:

sudo dpkg -i cuda-repo-ubuntu1604-9-2-local_9.2.88-1_amd64.deb
sudo apt-key add /var/cuda-repo-9-2-local/7fa2af80.pub
sudo apt-get update
sudo apt-get install cuda

官方CUDA下载下载页面还附带了一个cuBLAS 9.2 Patch更新,官方强烈建议安装:

This update includes fix to cublas GEMM APIs on V100 Tensor Core GPUs when used with default algorithm CUBLAS_GEMM_DEFAULT_TENSOR_OP. We strongly recommend installing this update as part of CUDA Toolkit 9.2 installation.

可以用如下方式安装这个Patch更新:

sudo dpkg -i cuda-repo-ubuntu1604-9-2-local-cublas-update-1_1.0-1_amd64.deb 
sudo apt-get update  
sudo apt-get upgrade cuda

CUDA9.2安装完毕之后,1080TI的显卡驱动也附带安装了,可以重启机器,然后用 nvidia-smi 命令查看一下:

最后在在 ~/.bashrc 中设置环境变量:

export PATH=/usr/local/cuda/bin${PATH:+:${PATH}}
export LD_LIBRARY_PATH=/usr/local/cuda/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}
export CUDA_HOME=/usr/local/cuda

运行 source ~/.bashrc 使其生效。

安装cuDNN7.x

同样去英伟达官网的cuDNN下载页面:https://developer.nvidia.com/rdp/cudnn-download,最新版本是cuDNN7.1.4,有三个版本可以选择,分别面向CUDA8.0, CUDA9.0, CUDA9.2:

cudnn7.1.4 cuda9.2 ubuntu16.04

下载完cuDNN7.1的压缩包之后解压,然后将相关文件拷贝到cuda的系统路径下即可:

tar -zxvf cudnn-9.2-linux-x64-v7.1.tgz
sudo cp cuda/include/cudnn.h /usr/local/cuda/include/
sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64/ -d 
sudo chmod a+r /usr/local/cuda/include/cudnn.h
sudo chmod a+r /usr/local/cuda/lib64/libcudnn*

安装TensorFlow 1.8

TensorFlow的安装变得越来越简单,现在TensorFlow的官网也有中文安装文档了:https://www.tensorflow.org/install/install_linux?hl=zh-cn , 我们Follow这个文档,用Virtualenv的安装方式进行TensorFlow的安装,不过首先要配置一下基础环境。

首先在Ubuntu16.04里安装 libcupti-dev 库:

这是 NVIDIA CUDA 分析工具接口。此库提供高级分析支持。要安装此库,请针对 CUDA 工具包 8.0 或更高版本发出以下命令:

$ sudo apt-get install cuda-command-line-tools
并将其路径添加到您的 LD_LIBRARY_PATH 环境变量中:

$ export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda/extras/CUPTI/lib64
对于 CUDA 工具包 7.5 或更低版本,请发出以下命令:

$ sudo apt-get install libcupti-dev

然而我运行“sudo apt-get install cuda-command-line-tools”命令后得到的却是:

E: 无法定位软件包 cuda-command-line-tools

Google后发现其实在安装CUDA9.2的时候,这个包已经安装了,在CUDA的路径下这个库已经有了:

/usr/local/cuda/extras/CUPTI/lib64$ ls
libcupti.so  libcupti.so.9.2  libcupti.so.9.2.88

现在只需要将其加入到环境变量中,在~/.bashrc中添加如下声明并令source ~/.bashrc另其生效即可:

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda/extras/CUPTI/lib64

剩下的就更简单了:

sudo apt-get install python-pip python-dev python-virtualenv 
virtualenv --system-site-packages tensorflow1.8
source tensorflow1.8/bin/activate
easy_install -U pip
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple --upgrade tensorflow-gpu

强烈建议将清华的pip源写到配置文件里,这样就更方便快捷了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值