POJ 3321 Apple tree

一看数据范围便能猜到要么是O(n),要么是n*log(n)的算法,并且这个查询和更改操作使人很自然地想起了树状数组,但是树状数组只能对区间进行操作,而题目的数据给出的是树的形式,需要将根节点和它的子树这个范围变成[ , ]区间的形式。我们可以从根节点出发用时间戳st[]记录开始位置,用end[]
记录结束位置,dfs根节点,求出每个点的区间,然后就变成了对区间的操作,查询区间操作依然是用r-(l-1) ;因为树状数组是从1开始记录的!!!

#include<iostream>
#include<cstdio>
using namespace std;
struct node{
    int from,to;
}list[100005];
int head[100005],t[100005],st[100005],end[100005],tot,n,q,x,y,s,m;
char ch;
bool v[100005];
void add(int x,int y){
    list[++s].from=head[x];
    list[s].to=y;
    head[x]=s;
}
int lowbit(int x){
    return x&-x;
}
void dfs(int x){
    st[x]=++tot;
    for (int i=head[x];i;i=list[i].from)
    {
        if (!v[list[i].to])
        dfs(list[i].to),v[list[i].to]=1;
    }
    end[x]=tot;
}
void up(int x,int y){
    while(x<=n){
        t[x]+=y;
        x+=lowbit(x);
    }
}
int query(int x){
    int sum=0;
    while(x){
        sum+=t[x];
        x-=lowbit(x);
    }
    return sum;
}
int main(){
    cin>>n;
    for (int i=1;i<n;i++){
        scanf("%d%d",&x,&y);
        add(x,y);
    }
    dfs(1);
    for (int i=1;i<=n;i++)
    up(i,1);
    cin>>m;
    for (int i=1;i<=m;i++){
        getchar();
        scanf("%c%d",&ch,&q);
        if(ch=='Q'){
            cout<<(query(end[q])-query(st[q]-1))<<endl;
        }
        else  {
            if (query(st[q])-query(st[q]-1)==1) up(st[q],-1);
            else up(st[q],1);
        }
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值