动态规划—矩阵连乘问题

问题

给定n个矩阵 { A1,A2,A3,…,An } ,其中Ai与Ai+1是可乘的。考察这n个矩阵连乘积A1A2A3…An

思路

两矩阵相乘代码

#include<iostream>
void matrixmultiply(int** a, int** b, int** c, int ra, int ca, int rb, int cb) {
	//ra、ca、rb、cb分别表示矩阵A和B的行数和列数
	if (ca != cb)
		error("矩阵不可乘!");
	for (int i = 0; i < ra; i++) {
		for (int j = 0; j < cb; j++) {
			int sum = a[i][0] * b[0][j];
			for (int k = 1; k < ca; k++)
				sum += a[i][k] * b[k][j];
			c[i][j] = sum;
		}
	}

}

由三个循环可知,两矩阵相乘共需计算 p * q * r 此数乘
为方便后续计算,令矩阵 Ai 的维度为 pi-1*pi

1. 分析最优解的结构

将矩阵连乘积A1A2A3…An简记为A[i:j],假设最优解在Ak和Ak+1之间断开,则总计算量为A[1:k]的计算量加上A[k+1,n]的计算量,再加上两者相乘的计算量。

  • eg.((A1A2)(A3A4)),需先分别计算A1A2、A3A4的计算量,还需加上两者相乘的计算量

A[1:k]和A[k+1:n]的最优解也是同样的问题,是动态规划问题的体现。

2.建立递归关系

设 A[i:j] 的最少此数乘为m[i][j] ,则原问题的最优解为m[1][n]。
当i==j时,单一矩阵,无需计算,m=0;
当i<j时,m[i][j]=min{m[i][k]+m[k+1][j]+pi-1 *pk *pj },i<=k<j

3.计算最优值

void MartixChain(int* p, int n, int** m, int** s) {
	//s记录最优断开位子
	for (int i = 1; i <= n; i++)
		m[i][i] = 0;
	for (int r = 2; r <= n; r++) {	//r为计算最优解的矩阵个数,从2到n
		for (int i = 1; i <= n - r + 1; i++) {
			int j = i + r + 1;
			m[i][j] = m[i + 1][j] + p[i - 1] * p[i] * p[j];
			s[i][j] = i;//记录位置
			for (int k = i + 1; k < j; k++) {
				int t = m[i][k] + m[k + 1][j] + p[i - 1] * p[k] * p[j];
				if (t < m[i][j]) {
					m[i][j] = t;
					s[i][j] = k;
				}
			}

		}
	}
}

由于过程中许多子序列多次计算,因此用数组s记录子序列的最优解,并采取从下向上(长度r从2到n)的方式来减少重复计算

3.构造最优解

void Traceback(int i, int j, int** s) {
	if (i == j)
		return;
	Traceback(i, s[i][j], s);
	Traceback(s[i][j] + 1, j, s);
	cout << "Multiply A " << i << "," << s[i][j];
	cout << " and A " << (s[i][j] + 1) << "," << j << endl;
}

从记录最优解位子的s数组可知,A[1:n]最优的加括号的位置为(A[1:s[1][n]])(A[s[1][n]+1][n]),以此类推
不断调用Traceback,计算出最有计算次序。

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值