借着这道模版题介绍一下三分算法
题目描述
给出一个N次函数,保证在范围[l,r]内存在一点x,使得[l,x]上单调增,[x,r]上单调减。试求出x的值。
输入格式
第一行一次包含一个正整数N和两个实数l,r,含义如题目描述所示。
第二行包含N+1个实数,从高到低依次表示该N次函数各项的系数。
样例输入
3 -0.9981 0.5
1 -3 -3 1
输出格式
输出为一行,包含一个实数,即为x的值。若你的答案与标准答案的相对或绝对误差不超过10-5则算正确。
什么是三分法?
三分法类似于二分,原理为不断缩小答案所在的求解区间。
二分缩小区间利用函数的单调性,而三分法利用的则是函数的单峰性。
拿样例来说:y = x3 - 3x2 - 3x + 1 , [ -0.9981 , 0.5 ] , 需要求出它在该区间的最大值max:
将[ -0.9981 , 0.5 ]均分为三个区间,
[-0.9981,-0.498] / [-0.498,0.00006] / [0.00006,0.5] 。
同时得到了两个点m1和m2:
我们把m1,m2中函数值更大的m1称为好点,较小的m2称为坏点。
那么不难发现,好点m1和极值max都在坏点m2的左侧,所以可以将搜索的区间缩小为[ -0.9981 , 0.00006 ] 。(0.00006即为m2的横坐标)
这样不断缩小搜索的区间,最终就能够获得一个足够小的区间以至接近一个实数值,以达到求值的目的。
代码实现看这里
#include