1. 引言
人工智能助手在移动平台上的普及和实用性日益增长,例如谷歌助手和 OPPO 小布助手。这种趋势反映了用户对能够理解自然语言并执行各种任务的智能伴侣的需求。尤其值得注意的是,行业正在转向设备端人工智能处理,以增强用户隐私和提高运行效率。OPPO 小布助手等应用程序展示了将复杂的人工智能功能直接集成到移动操作系统中的潜力,这表明用户越来越期望在无需完全依赖云服务的情况下获得智能且上下文感知的帮助 1。OPPO 在其 ColorOS 15 中对人工智能功能的重视,以及他们使用自主研发的大型语言模型 AndesGPT,突显了定制人工智能解决方案在差异化和优化其特定硬件和软件生态系统方面的价值 1。虽然构建定制的 LLM 可能并非所有开发者都能实现,但理解定制人工智能模型的优势可以指导开发者决定是否微调现有模型或利用与所需助手功能相符的特定 API。
本报告旨在为安卓开发者提供一份全面的技术指南,指导他们开发一款能够模仿 OPPO 小布助手核心功能的安卓应用程序。报告将涵盖必要的安卓组件、语音识别技术、自然语言理解框架、后台处理、应用间通信、权限处理以及相关的开源项目。通过本报告,开发者可以更好地理解构建类似人工智能助手所面临的关键挑战和机遇,例如实现类似水平的人工智能集成、处理各种用户查询、确保性能和隐私等。同时,报告也将探讨如何利用设备端人工智能的最新进展来创建更智能、更高效的移动助手。
2. 理解 OPPO 小布助手
-
主要特点与功能:
- ColorOS 中人工智能驱动的功能: OPPO Reno 11 系列和 ColorOS 15 确认引入了多项人工智能功能,包括 AI 橡皮擦、AI 通话摘要、照片智能移除(类似于谷歌的魔法橡皮擦)、通话摘要(包含转录和时间戳)以及经过改进的小布智能助手 1。OPPO 正大力投资由其专有大型语言模型 AndesGPT 提供支持的生成式人工智能功能,以增强其设备的生产力和娱乐性 1。例如,AndesGPT 作为小布助手增强人工智能能力的基础,包括改进的对话、处理更广泛的查询以及生成人工智能图像 1。
- 用户互动与界面: 用户可以在 ColorOS 15 的任何屏幕上唤醒小布助手,进行自然的对话,并使用诸如“圈选搜索”之类的功能 2。ColorOS 15 中超级小布助手的用户界面据报道与苹果的 Siri 具有相似的设计,在激活时屏幕周围会呈现发光边框 7。
- 人工智能驱动的生产力工具: 小布助手还提供 AI 语音摘要、AI 文档管理(转换和翻译)、AI 笔记(格式化和摘要)以及 AI 帮助写作(生成插图)等功能 2。值得注意的是,小布助手正在发展以支持更复杂的任务,包括面试培训、英语学习、旅行计划和餐厅评论写作,这些都由 AndesGPT 提供支持 6。
- 人工智能图像处理: 小布助手提供 AI 超高清像素、AI 去污、AI 去眩光和 AI 行人移除等功能,以增强照片编辑体验 2。
- 其他显著功能: 小布助手还具备一键屏幕查询、屏幕识别问答、圈选问题和照片问答等功能 2。
-
底层技术 (AndesGPT):
- AndesGPT 是 OPPO 的大型语言模型,为小布助手提供动力,强调其增强的语义理解、从文本提示生成内容以及改进的摘要技能 1。它采用混合云架构,并基于之前的 OBERT 模型构建 5。AndesGPT 的开发,包括从中文对话数据中持续学习以及使用人类反馈进行强化学习 5,表明 OPPO 致力于创建一个高度适应用户互动和语言细微差别的助手。
3. 语音助手核心安卓组件
-
安卓语音交互服务 API:
VoiceInteractionService
API 作为安卓上不同语音控制应用(助手)的抽象层 12。VoiceInteractionSession
(VIS) 封装了用户交互逻辑,处理请求并接收辅助数据 12。VoiceInteractionSessionService
(VSS) 负责管理单个语音交互会话 12。VoiceInteractionService
API 与RecognitionService
和SoundTrigger
等系统服务交互 12,这突显了其作为将语音功能深度集成到安卓系统中的核心作用。这种交互使得助手能够利用平台内置的语音识别和唤醒词检测功能。- 主要方面: 抽象、实现指南、AAOS 集成、核心助手体验(响应触发器、可视化进度、语音/声音反馈、充当语音识别器)、与系统组件的交互 12。
- 术语: 定义关键术语,如辅助数据、PTT、RecognitionService (RS)、TTT、
VoiceInteractionService
、VIS、VSS 和 VIA 12。
-
安卓意图机制:
- 意图 (Intent) 用于请求其他应用组件执行操作、启动活动、服务和传递广播 13。存在显式意图(针对特定组件)和隐式意图(声明要执行的操作)13。助手可以通过智能地使用意图将任务委派给设备上安装的其他专门应用程序,从而显著扩展其功能。例如,助手可以使用带有
ACTION_CALL
和电话号码 URI 的隐式意图通过用户的默认电话应用发起呼叫。 - 常用意图示例: 启动闹钟、日历、相机、联系人、电子邮件、地图、电话、搜索、短信和网页浏览等活动的意图 16。
- 使用意图发送数据: 使用
putExtra()
在组件之间传递数据 13。
- 意图 (Intent) 用于请求其他应用组件执行操作、启动活动、服务和传递广播 13。存在显式意图(针对特定组件)和隐式意图(声明要执行的操作)13。助手可以通过智能地使用意图将任务委派给设备上安装的其他专门应用程序,从而显著扩展其功能。例如,助手可以使用带有
-
安卓服务 (前台和后台):
- 安卓服务 (Service) 的概念是用于在后台运行长时间操作而无需用户界面的组件 20。
- 前台服务用于用户可见的操作,需要持久通知(例如音乐播放、文件下载)20。前台服务强制要求持久通知 22,这确保了用户知晓并防止助手在后台静默消耗资源。此要求是安卓的设计选择,旨在为用户提供对其应用在前台运行的透明度和控制。
- 后台服务用于用户不直接注意到的操作(例如数据同步、存储压缩)20。
- 服务生命周期: 解释
onStartCommand()
、onBind()
、onCreate()
、onDestroy()
20。 - 持久通知: 解释如何创建和管理持久通知,以告知用户助手正在进行的活动 27。
4. 实现语音识别
-
安卓
SpeechRecognizer
API:- 介绍内置的
SpeechRecognizer
类,用于访问语音识别服务 34。 - 讨论设置,包括权限(
RECORD_AUDIO
、INTERNET
)、使用RecognizerIntent.ACTION_RECOGNIZE_SPEECH
创建意图以及设置语言模型(LANGUAGE_MODEL_FREE_FORM
、LANGUAGE_MODEL_WEB_SEARCH
)34。 - 解释
RecognitionListener
接口及其回调方法(onReadyForSpeech
、onBeginningOfSpeech
、onResults
、onError
)34。 - 代码示例: 提供一个基本的代码片段,演示如何初始化和启动
SpeechRecognizer
35。 - 洞察 4.1:
SpeechRecognizer
API 依赖于设备内置的语音识别能力,其准确性和语言支持可能因安卓版本和设备制造商而异 34。
- 介绍内置的
-
谷歌云语音到文本 API:
- 介绍云端语音到文本 API,该 API 提供先进的功能和准确性 45。
- 讨论设置过程,包括创建谷歌云项目、启用 API 和设置身份验证 46。
- 解释 API 在同步和异步识别中的使用,包括发送音频数据和接收转录 45。
- 代码示例: 提供一个使用 REST API 或客户端库(Python 或 Java,注意 Java 客户端库对安卓的限制)的概念性示例 46。
- 洞察 4.2: 谷歌云语音到文本 API 能够利用先进的语音 AI 模型(如 Chirp,该模型在大量音频数据上进行了训练),从而提高识别准确率,尤其是在不同的语言和口音方面 45。
-
Vosk API(离线语音识别):
- 介绍 Vosk,这是一个开源的离线语音识别工具包 61。
- 讨论其功能,包括支持多种语言、模型体积小、连续大词汇量转录和零延迟响应 61。
- 解释如何将 Vosk API 集成到安卓项目中(Gradle 依赖)61。
- 代码示例: 提供一个基本的示例,演示如何在安卓中初始化和使用 Vosk API 进行语音识别(指向 Vosk Android 演示项目)61。
- 洞察 4.3: Dicio 是一款开源的安卓语音助手,它使用 Vosk 作为其语音转文本引擎 67,展示了 Vosk 在移动助手环境中的实际应用。
-
Picovoice SDKs(设备端语音人工智能):
- 介绍 Picovoice,这是一个端到端的设备端语音 AI 平台,包括唤醒词检测、语音到意图和语音到文本 68。
- 讨论提供的不同 SDK:Cobra VAD、Porcupine Wake Word、Rhino Speech-to-Intent、Cheetah Streaming Speech-to-Text 和 Leopard Speech-to-Text 68。
- 解释集成过程(MavenCentral 依赖、权限),并提供用于初始化和使用每个 SDK 执行特定任务(唤醒词检测、意图识别、转录)的代码示例 68。
- 洞察 4.4: Picovoice 对设备端处理的关注与移动设备上对注重隐私的人工智能解决方案日益增长的需求相一致 68。
5. 自然语言理解以进行意图识别和槽填充
-
意图识别和槽填充基础:
- 解释会话系统中 NLU 的核心任务:意图识别(识别用户的目标)和槽填充(提取相关信息或参数)80。
- 讨论涉及的典型步骤:数据收集和预处理、特征提取、模型训练、意图分类和槽填充 80。
- 提及常用于槽填充的 IOB 标记格式 82。
-
Spark NLP:
- 介绍 Spark NLP,这是一个用于大型语言模型的先进 NLP 库,原生构建于 Apache Spark 之上 88。
- 突出其与意图识别和实体提取相关的功能,例如文本分类和命名实体识别 (NER) 88。
- 洞察 5.1: Spark NLP 的预训练模型和管道 88 可以显著简化在安卓应用程序中实现意图识别和实体提取的过程,尤其对于常见的用例和语言。
-
MediaPipe 文本分类器:
- 介绍 MediaPipe 文本分类器任务,用于将文本分类为一组定义的类别(情感分析等)94。
- 解释其功能、输入、输出和配置选项 94。
- 提及它对图外标记化和多分类头的支持 95。
- 洞察 5.2: MediaPipe 文本分类器能够使用自定义模型 95,这使得开发者能够根据特定领域或独特的用户意图集来定制其助手意图识别能力。
-
Apache OpenNLP:
- 介绍 Apache OpenNLP,这是一个基于机器学习的自然语言文本处理工具包 87。
- 突出其对分词、句子分割、词性标注、命名实体提取和意图识别的支持 87。
- 代码示例: 提供一个使用 OpenNLP 进行意图识别和实体提取的概念性示例 87。
-
KotlinNLP:
- 介绍 KotlinNLP,这是一个用 Kotlin 编写的自然语言处理库 104。
- 提及它的实用工具、语言描述、SimpleDNN 和 FrameExtractor(用于意图检测和槽填充)模块 104。
-
Rasa:
- 介绍 Rasa,这是一个开源的会话式 AI 框架,用于构建聊天机器人和助手,强调意图识别和实体提取 106。
- 讨论其使用示例、意图和实体训练 NLU 模型的方法 106。
- 提及实体角色、组、同义词和正则表达式等功能,以改进实体提取 106。
6. 构建关键助手功能
-
处理用户查询:
- 解释接收用户输入(语音或文本)的过程。
- 讨论如何预处理输入(分词、停用词移除等)。
- 说明如何使用 NLU 框架(从上一节中选择)来识别用户的意图并提取相关槽位。
-
提供响应:
- 解释如何根据识别的意图和提取的槽位生成适当的响应。
- 讨论使用文本到语音 (TTS) 引擎(如安卓的
TextToSpeech
或基于云的 TTS 服务)进行语音输出。 - 提及提供上下文相关且有用的响应的重要性。
-
执行操作:
- 演示助手如何根据用户的意图执行操作(例如,设置计时器、拨打电话、打开应用程序)。
- 强调使用安卓意图与其他应用程序和系统功能进行交互。
- 讨论如何处理助手需要请求澄清或额外信息的情况。
7. 管理后台操作和通知
-
使用前台服务进行持续操作:
- 提供创建和管理前台服务的代码示例,以确保助手可以持续监听语音命令或执行后台任务 22。
- 解释如何创建和显示持久通知,以告知用户服务正在运行 25。
- 讨论在清单文件中声明前台服务类型的重要性 25。
-
处理后台任务:
- 解释如何使用后台服务或其他后台处理技术(如 WorkManager)来处理不太重要或定期的任务。
-
通过通知提供用户反馈:
- 说明如何使用通知告知用户助手的状态、响应或操作 27。
- 讨论不同类型的通知(浮动通知、可展开通知)及其适当的用例 30。
8. 利用安卓意图进行应用间通信
-
启动其他活动:
- 提供使用隐式意图启动其他应用程序中的活动的示例,以执行诸如拨打电话、发送短信、打开地图或导航到网站之类的任务 16。
- 解释如何检查是否有应用程序可以处理该意图并处理
ActivityNotFoundException
16。
-
向其他应用发送数据:
- 演示如何使用带有
putExtra()
的意图与其他应用程序共享数据(例如,共享文本、图像)16。
- 演示如何使用带有
-
接收来自其他应用的数据 (如果适用):
- 简要介绍助手如何通过意图接收来自其他应用程序的数据或响应(例如,处理来自
startActivityForResult()
的结果)。
- 简要介绍助手如何通过意图接收来自其他应用程序的数据或响应(例如,处理来自
9. 处理语音和其他功能的权限
-
请求麦克风权限:
- 解释请求
RECORD_AUDIO
运行时权限的过程(检查是否已授予、显示理由、使用requestPermissions()
)34。 - 讨论在上下文中请求权限的最佳实践(当用户发起语音操作时)以及如何优雅地处理权限拒绝 115。
- 解释请求
-
请求其他必要的权限:
- 讨论助手可能需要的其他权限,例如
READ_CONTACTS
、SEND_SMS
、ACCESS_FINE_LOCATION
,以及如何请求这些权限 115。 - 强调向用户解释为什么需要这些权限的重要性 115。
- 讨论助手可能需要的其他权限,例如
-
成为默认处理程序 (如果适用):
- 如果助手旨在处理诸如电话呼叫或短信之类的核心系统功能,则解释请求成为默认处理程序的过程 117。
10. 探索开源语音助手项目
-
Dicio 助手:
- 介绍 Dicio,这是一个免费且开源的安卓语音助手,完全在设备上运行以保护隐私 67。
- 提及它使用 Vosk 进行语音转文本,并支持各种技能和语言 67。
- 突出其设备上用户输入的解释 67。
-
Aimybox 安卓助手:
- 介绍 Aimybox,这是一个用于安卓应用程序的可嵌入自定义语音助手 SDK 128。
- 讨论其模块化和独立于特定的 STT、TTS 和 NLU 供应商 128。
- 提及其即用型 UI 组件以及对 Aimylogic、Rasa 和 Dialogflow 等各种 NLU 提供商的支持 128。
-
其他潜在项目:
- 简要提及其他可能提供有用组件或见解的相关开源 NLP 或语音相关项目(例如,NLP-Android、LM-Kit.NET、Mistral AI、ChatGPT、Herbie.ai、just-ai/aimybox-android-assistant、shinyorg/discussions、gotev/android-speech、Picovoice GitHub 仓库、KotlinNLP GitHub、Apache OpenNLP GitHub、Rasa GitHub)61。
11. 结论与建议
- 关键方面总结: 简要重申开发类似于 OPPO 小布助手的安卓应用程序的基本步骤和考虑因素。
- 技术挑战与解决方案: 讨论主要的技术障碍(语音识别准确性、NLU 复杂性、后台处理、资源管理)和潜在的解决方案。
- 最佳实践与建议: 为着手进行此类项目的开发者提供可操作的建议,包括:
- 根据应用程序的需求选择合适的语音识别和 NLU 技术(在线与离线、准确性需求、语言支持)。
- 设计直观且用户友好的界面。
- 优化性能和电池寿命。
- 彻底处理权限并确保用户隐私。
- 考虑使用开源项目和库来加速开发。
- 未来趋势: 简要提及设备端人工智能的潜在未来发展及其对安卓语音助手的影响。
关键实用表格:
- 语音识别 API/SDK 比较 (第 4 节):
API/SDK 名称 | 在线/离线支持 | 主要特点 | 优点 | 缺点 | 用例 |
Android SpeechRecognizer | 在线 | 易于实现,内置于 Android | 实现简单,无需额外配置 | 功能有限,可能需要为每个请求调用服务 | 简单的语音指令识别 |
谷歌云语音到文本 API | 在线 | 高准确性,支持多种语言,可定制模型 | 先进的语音 AI 模型,准确性高 | 需要网络连接,可能产生费用 | 需要高准确性和广泛语言支持的应用 |
Vosk API | 离线 | 支持多种语言,模型体积小,连续转录,零延迟 | 完全离线,隐私保护,资源消耗低 | 对于某些语言的准确性可能不如云端方案 | 网络连接不可靠或注重隐私的应用 |
Picovoice SDKs | 设备端 | 唤醒词检测,语音到意图,语音到文本,多种 SDK 可选 | 完全在设备上运行,隐私保护,低延迟 | 需要购买授权,模型定制可能需要额外工作 | 注重隐私和低延迟的复杂语音助手 |
- NLU 框架比较 (第 5 节):
框架名称 | 主要编程语言 | 设备端/服务器端 | 主要特点 | 优点 | 缺点 | 用例 |
Spark NLP | Python/Scala/Java | 设备端/服务器端 | 文本分类,命名实体识别,支持大型语言模型 | 可扩展性强,性能高,适用于大数据场景 | 学习曲线陡峭,可能需要较多资源 | 处理大量文本数据或需要与 Spark 集成 |
MediaPipe 文本分类器 | C++/Python/Java | 设备端 | 文本分类,多分类头,图外标记化 | 轻量级,高效,适合移动设备 | 功能相对简单 | 简单的意图识别场景 |
Apache OpenNLP | Java | 设备端 | 分词,句子分割,词性标注,命名实体识别,意图识别 | 成熟的 Java 库,提供广泛的 NLP 工具 | 性能可能不如其他一些库 | 熟悉 Java 且需要全面 NLP 功能的应用 |
KotlinNLP | Kotlin | 设备端 | 意图检测,槽填充,语言描述,简单 DNN | 使用 Kotlin 编写,可能更符合 Kotlin 应用的习惯 | 社区和文档可能不如其他库完善 | 主要使用 Kotlin 开发的应用 |
Rasa | Python | 服务器端 (通常) | 意图识别,实体提取,对话管理,灵活的训练数据 | 功能强大,适用于复杂的对话流程 | 需要复杂的会话流程和高级 NLU 功能 |
12. 结论与建议
开发一款类似于 OPPO 小布助手的安卓应用程序是一项复杂但极具潜力的任务。本报告探讨了实现这一目标所需的关键功能、技术和方法。通过对 OPPO 小布助手的功能和底层技术(如 AndesGPT)的分析,我们可以看到未来移动助手的发展方向是更加智能化、情境化和个性化 5。
开发者在着手此类项目时,需要在语音识别和自然语言理解方面做出关键的技术选择。安卓平台提供了内置的 SpeechRecognizer
API,这对于简单的语音交互来说是一个便捷的起点 34。然而,对于需要更高准确性、更广泛的语言支持或离线功能的场景,开发者可以考虑集成谷歌云语音到文本 API、Vosk API 或 Picovoice SDKs 45。每种技术都有其自身的优缺点,开发者应根据应用程序的具体需求进行权衡。
在自然语言理解方面,存在多种强大的框架可供选择。Spark NLP 适用于需要处理大量数据或与 Spark 生态系统集成的应用程序 88。MediaPipe 文本分类器提供了一种轻量级的设备端解决方案,适用于简单的意图识别任务 94。Apache OpenNLP 是一个成熟的 Java 库,提供了全面的 NLP 工具集 87。对于使用 Kotlin 的开发者,KotlinNLP 提供了一个原生的选择 104。最后,Rasa 作为一个开源会话式 AI 框架,特别适合构建具有复杂对话流程的助手 106。
除了核心的语音识别和 NLU 功能外,开发者还需要关注后台操作的管理,以确保助手能够持续运行并提供及时的响应 20。利用安卓的意图机制可以实现助手与其他应用程序的无缝交互,从而扩展其功能 13。此外,妥善处理用户权限,特别是麦克风权限,对于建立用户信任至关重要 34。
开发者还可以借鉴开源语音助手项目,如 Dicio 和 Aimybox 67,这些项目提供了宝贵的见解和潜在的可重用组件。
总而言之,开发类似于 OPPO 小布助手的安卓应用程序需要仔细选择合适的技术栈,深入理解安卓平台的各种组件,并持续关注用户体验和隐私保护。随着设备端人工智能技术的不断发展,未来的安卓助手将能够提供更加智能、个性化和无缝的帮助。