路径
蓝桥杯2021省赛 普通填空
题目描述
本题为填空题,只需要算出结果后,在代码中使用输出语句将所填结果输出即可。
小蓝学习了最短路径之后特别高兴,他定义了一个特别的图,希望找到图 中的最短路径。
小蓝的图由 2021 个结点组成,依次编号 1 至 2021。
对于两个不同的结点 a, b,如果 a 和 b 的差的绝对值大于 21,则两个结点 之间没有边相连;如果 a 和 b 的差的绝对值小于等于 21,则两个点之间有一条 长度为 a 和 b 的最小公倍数的无向边相连。
例如:结点 1 和结点 23 之间没有边相连;结点 3 和结点 24 之间有一条无 向边,长度为 24;结点 15 和结点 25 之间有一条无向边,长度为 75。
请计算,结点 1 和结点 2021 之间的最短路径长度是多少。
提示:建议使用计算机编程解决问题。
运行限制
-
最大运行时间:1s
-
最大运行内存: 128M
AC代码
#include <iostream>
using namespace std;
const int INF = 999999999;
int dp[2030];
int min(int x,int y){ return x<y?x:y; }
int gcd(int x,int y){
if(x<y)return gcd(y,x);
if(x%y)return gcd(x%y,y);
return y;
}
int lcm(int x,int y){
return x*y/gcd(x,y);
}
int main()
{
for(int i=2;i<=2021;i++)dp[i]=INF;
for(int i=1;i<2021;i++){
for(int j=i+1;j-i<=21&&j<=2021;j++){
dp[j] = min(dp[j],dp[i]+lcm(i,j));
}
}
cout<< dp[2021];
return 0;
}
解析
首先,在学习这道题的解法之前,笔者建议先了解递归与动态规划(dp)的定义,熟悉一下两者在自己常用语言的实现方法后,再了解一下辗转相除法求最大公约数的知识。
这里有一个数学公式,用来计算最小公倍数的:
GCD(x,y) * LCM(x,y) == x * y
GCD:最大公约数
LCM:最小公倍数
所以这道题所需要的最小公倍数就由这个公式来求(不要忘了检查数字是否越界,虽然这道题没有)。
然后就是dp的过程了,活用for循环,将与第 i 个点有点连接的路径长都求出来,然后取最小值。当然别忘了把数组初始化为极大值INF,不然答案永远只能是0。