C/C++实现矩阵/图像向右旋转90度

本文介绍了如何使用C/C++编程语言来实现矩阵和图像的90度向右旋转操作,详细阐述了旋转的具体实现原理和步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        使用C/C++对图像/矩阵向右旋转,具体的实现原理及步骤如下图所示:

#include <iostream>
#include <string.h>
using namespace std;

int main()
{
    int w = 4, h = 4;
    int imgSize = w * h;
    unsigned short *pImg = NULL;
    unsigned short *pImgR = NULL;

    pImg = new unsigned short[imgSize];
    if(pImg != NULL)
    {
        memset(pImg, 0, sizeof(unsigned short) * imgSize);
    }

    pImgR = new unsigned short[imgSize];
    if(pImgR != NULL)
    {
        memset(pImgR, 0, sizeof(unsigned short) * imgSize);
    }

    cout << "右旋前:" << endl;
    for (int i = 0; i < h; i++) //行
    {
        for (int j = 0; j < w; j++) //列
        {
            pImg[j + i * w] = j + i * w;
03-10
### 矩阵的概念与基础 矩阵是一个按长方形阵列排列的数学对象,其在线性代数及其他数学领域中有广泛应用[^1]。具体而言,矩阵由行和列组成的数据表表示,可用于描述线性映射、解线性方程组以及执行各种数值分析。 ### 基本运算 对于两个相同大小的矩阵A和B: - **加法**:对应位置相加得到新矩阵C=C[i,j]=A[i,j]+B[i,j] - **减法**:同理可得D=D[i,j]=A[i,j]-B[i,j] - **乘法**:设\( A \in R^{m\times n} , B\in R ^{n\times p}\),则 \(AB\) 的第 i 行 j 列元素等于 A 的第 i 行与 B 的第 j 列相应元素之积再求和的结果\[ (AB)[i][j]=\sum_{k=0}^{n}(a[i][k]*b[k][j]) \] 此外还有转置、幂次等操作。 ```python import numpy as np # 定义两个矩阵 matrix_a = np.array([[1, 2], [3, 4]]) matrix_b = np.array([[5, 6], [7, 8]]) # 加法 addition_result = matrix_a + matrix_b print(addition_result) # 减法 subtraction_result = matrix_a - matrix_b print(subtraction_result) # 乘法 multiplication_result = np.dot(matrix_a,matrix_b) print(multiplication_result) ``` ### 高级应用——分块技术 为了简化复杂较高的矩阵计算过程,通常采用分块方法将其划分为更小规模的部分来进行处理。这种方法不仅有助于降低算法的时间复杂,还使得某些特定类型的矩阵更容易被理解和管理[^2]。 例如,在实现大规模稀疏矩阵存储时,可以通过适当的方式对其进行分区;而在并行计算环境中,则可以根据硬件架构特点合理分配任务单元以提升效率。 ### 特殊用途——逆矩阵 如果存在一个矩阵M满足条件MM⁻¹=M⁻¹M=E(E代表单位矩阵),那么称M为可逆矩阵,并记作M⁻¹为其对应的逆矩阵。这一特性在解决线性系统方面具有重要意义,尤其是在编程语言中提供了专门函数用于高效求取逆矩阵的情况下更是如此[^3]。 ### 实际场景下的运用实例 除了理论研究外,矩阵同样活跃于众多工程实践之中。比如,在计算机图形学里,借助齐次坐标的引入,可以方便地表达物体的空间位姿变化规律,进而支持三维建模软件完成诸如旋转、缩放和平移之类的几何变换操作[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值