一般遇到二叉树的相关问题,我们优先考虑使用递归的方法去解决他
使用递归算法解决问题通常是在遇到可以分解为更小、相似子问题的情况时考虑的。递归算法的基本思想是将一个大规模的问题拆分成若干个规模较小的子问题来解决,子问题的解决方式与原问题相同,只是规模更小。当子问题被解决后,原问题也就得到了解决。
对于删除节点,查找特殊节点的时候,我们就可以使用这种方法来解决
比如LCR 047. 二叉树剪枝 - 力扣(LeetCode)这道题,我首先想到删除该节点的标志在于左右节点为null,并且该节点的值为0,使用栈对树进行层序遍历后存储,接着删除即可,但是这里存在着一个问题,使用栈弹出的节点,进行删除,并不能影响到原树中的元素,删除节点时,你需要确保父节点正确地更新其子节点的引用。如果直接设置子节点为null
,你需要一种方式来通知父节点。
那么就得保存一个路径可以告知父节点,这个时候就可以使用递归的方法
代码实现是这样的
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public TreeNode pruneTree(TreeNode root) {
if(root==null){
return null;
}
root.left = pruneTree(root.left);
root.right = pruneTree(root.right);
if(root.left==null&&root.right==null&&root.val==0){
root=null;
}
return root;
}
}
在这个修正后的版本中,pruneTree
方法返回修剪后的子树根节点,父节点通过root.left = pruneTree(root.left)
和root.right = pruneTree(root.right)
来更新子节点的引用。
进行了上级的传递,保存了路径。