LeetCode-10-正则表达式匹配

题目

来源:LeetCode.

给你一个字符串 s 和一个字符规律 p,请你来实现一个支持 '.' 和 '*' 的正则表达式匹配。

'.' 匹配任意单个字符
'*' 匹配零个或多个前面的那一个元素
所谓匹配,是要涵盖 整个 字符串 s的,而不是部分字符串。

示例 1:

输入:s = "aa" p = "a"
输出:false
解释:"a" 无法匹配 "aa" 整个字符串。

示例 2:

输入:s = "aa" p = "a*"
输出:true
解释:因为 '*' 代表可以匹配零个或多个前面的那一个元素, 在这里前面的元素就是 'a'。因此,字符串 "aa" 可被视为 'a' 重复了一次。

示例 3:

输入:s = "ab" p = ".*"
输出:true
解释:".*" 表示可匹配零个或多个('*')任意字符('.')。

示例 4:

输入:s = "aab" p = "c*a*b"
输出:true
解释:因为 '*' 表示零个或多个,这里 'c'0, 'a' 被重复一次。因此可以匹配字符串 "aab"

示例 5:

输入:s = "mississippi" p = "mis*is*p*."
输出:false

提示:

0 <= s.length <= 20
0 <= p.length <= 30
s 可能为空,且只包含从 a-z 的小写字母。
p 可能为空,且只包含从 a-z 的小写字母,以及字符 .*。
保证每次出现字符 * 时,前面都匹配到有效的字符

    看到这个问题我首先想到的方法就是如何匹配字符串,结果看了官方的题解才知道要用动态规划,裂开。

接下来看一下解题思路:

方法:

    题目中的匹配是一个「逐步匹配」的过程:我们每次从字符串 p p p 中取出一个字符或者「字符 + 星号」的组合,并在 s s s 中进行匹配。对于 p p p 中一个字符而言,它只能在 s s s 中匹配一个字符,匹配的方法具有唯一性;而对于 p p p 中 字符 + 星号 的组合而言,它可以在 s s s 中匹配任意自然数个字符,并不具有唯一性。因此我们可以考虑使用动态规划,对匹配的方案进行枚举。

    我们用 d p [ i ] [ j ] dp[i][j] dp[i][j] 表示 s s s 的前 ii 个字符与 p p p 中的前 j j j 个字符是否能够匹配。在进行状态转移时,我们考虑 p p p 的第 j j j 个字符的匹配情况:

  • 如果 p p p 的第 j j j 个字符是一个小写字母,那么我们必须在 s s s 中匹配一个相同的小写字母,即
    d p [ i ] [ j ] = { d p [ i − 1 ] [ j − 1 ] , s [ i ] = p [ j ] f a l s e , s [ i ] ≠ p [ j ] dp[i][j] = \begin{cases} dp[i - 1][j - 1], & \text{$s[i] = p[j]$} \\ false, & \text{$s[i] \not= p[j]$} \end{cases} dp[i][j]={dp[i1][j1],false,s[i]=p[j]s[i]=p[j]

    也就是说,如果 s s s 的第 i i i 个字符与 p p p 的第 j j j 个字符不相同,那么无法进行匹配;否则我们可以匹配两个字符串的最后一个字符,完整的匹配结果取决于两个字符串前面的部分。

  • 如果 p p p 的第 j j j 个字符是 ∗ * ,那么就表示我们可以对 p p p 的第 j − 1 j−1 j1 个字符匹配任意自然数次。在匹配 0 0 0 次的情况下,我们有

                                 d p [ i ] [ j ] = d p [ i ] [ j − 2 ] dp[i][j] = dp[i][j - 2] dp[i][j]=dp[i][j2]

    也就是我们「浪费」了一个字符 + 星号的组合,没有匹配任何 s s s 中的字符。

在匹配 1,2,3,⋯  \text{1,2,3,⋯ } 1,2,3,⋯ 次的情况下,类似地我们有

{ d p [ i ] [ j ] = d p [ i − 1 ] [ j − 2 ] , i f   s [ i ] = p [ j − 1 ] d p [ i ] [ j ] = d p [ i − 2 ] [ j − 2 ] , i f   s [ i − 1 ] = s [ i ] = p [ j − 1 ] d p [ i ] [ j ] = d p [ i − 3 ] [ j − 2 ] , i f   s [ i − 2 ] = s [ i − 1 ] = s [ i ] = p [ j − 1 ] ⋯ ⋯ \begin{cases} dp[i][j]=dp[i−1][j−2], & \text{$if \ s[i]=p[j−1]$} \\ dp[i][j]=dp[i−2][j−2], & \text{$if \ s[i−1]=s[i]=p[j−1]$} \\ dp[i][j]=dp[i−3][j−2], & \text{$if \ s[i−2]=s[i−1]=s[i]=p[j−1]$} \\ ⋯⋯ \end{cases} dp[i][j]=dp[i1][j2],dp[i][j]=dp[i2][j2],dp[i][j]=dp[i3][j2],if s[i]=p[j−1]if s[i−1]=s[i]=p[j−1]if s[i−2]=s[i−1]=s[i]=p[j−1]

    如果我们通过这种方法进行转移,那么我们就需要枚举这个组合到底匹配了 s s s 中的几个字符,会增导致时间复杂度增加,并且代码编写起来十分麻烦。我们不妨换个角度考虑这个问题:字母 + 星号的组合在匹配的过程中,本质上只会有两种情况:

     1. 1. 1. 匹配 s s s 末尾的一个字符,将该字符扔掉,而该组合还可以继续进行匹配;

     2. 2. 2. 不匹配字符,将该组合扔掉,不再进行匹配。

如果按照这个角度进行思考,可以写出很精巧的状态转移方程:

d p [ i ] [ j ] = { d p [ i − 1 ] [ j ] o r d p [ i ] [ j − 2 ] , s [ i ] = p [ j − 1 ] d p [ i ] [ j − 2 ] , s [ i ] ≠ p [ j − 1 ] dp[i][j]= \begin{cases} dp[i - 1][j] or dp[i][j - 2], &\text{$s[i] = p[j - 1]$} \\ dp[i][j - 2], &\text{$s[i] \not= p[j - 1]$} \end{cases} dp[i][j]={dp[i1][j]ordp[i][j2],dp[i][j2],s[i]=p[j1]s[i]=p[j1]

  • 在任意情况下,只要 p [ j ] p[j] p[j] 是 .,那么 p [ j ] p[j] p[j] 一定成功匹配 s s s 中的任意一个小写字母。

最终的状态转移方程如下:
d p [ i ] [ j ] = { i f ( p [ j ] ) ̸ = ′ ∗ ′ ) = { d p [ i − 1 ] [ j − 1 ] , m a t c h e s ( s [ i ] , p [ j ] ) f a l s e , o t h e r w i s e o t h e r w i s e = { d p [ i − 1 ] [ j ] o r d p [ i ] [ j − 2 ] , m a t c h e s ( s [ i ] , p [ j − 1 ] ) d p [ i ] [ j − 2 ] , o t h e r w i s e dp[i][j]= \begin{cases} \text{$if(p[j]) \not= '*')$}= \begin{cases} dp[i - 1][j - 1], &\text{$matches(s[i], p[j])$} \\ false, &\text{$otherwise$} \\ \end{cases} \\ \text{$otherwise=$} \begin{cases} dp[i - 1][j] or dp[i][j - 2], &\text{$matches(s[i], p[j - 1])$} \\ dp[i][j - 2], &\text{$otherwise$} \end{cases} \end{cases} dp[i][j]=if(p[j])=)={dp[i1][j1],false,matches(s[i],p[j])otherwiseotherwise={dp[i1][j]ordp[i][j2],dp[i][j2],matches(s[i],p[j1])otherwise

其中 matches(x,y) \text{matches(x,y)} matches(x,y) 判断两个字符是否匹配的辅助函数。只有当 y y y . . . 或者 x x x y y y 本身相同时,这两个字符才会匹配。

细节

    动态规划的边界条件为 d p [ 0 ] [ 0 ] = true dp[0][0] = \text{true} dp[0][0]=true,即两个空字符串是可以匹配的。最终的答案即为 d p [ m ] [ n ] dp[m][n] dp[m][n],其中 m m m n n n 分别是字符串 s s s p p p 的长度。由于大部分语言中,字符串的字符下标是从 0 0 0 开始的,因此在实现上面的状态转移方程时,需要注意状态中每一维下标与实际字符下标的对应关系。

public boolean isMatch(String s, String p) {
    int m = s.length();
    int n = p.length();

    boolean[][] dp = new boolean[m + 1][n + 1];
    dp[0][0] = true;

    for (int i = 0; i <= m; ++i) {
        for (int j = 1; j <= n; ++j) {
            if (p.charAt(j - 1) == '*') {
                if (matches(s, p, i, j - 1)) {
                    dp[i][j] = dp[i - 1][j] || dp[i][j - 2];
                } else {
                    dp[i][j] = dp[i][j - 2];
                }
            } else {
                if (matches(s, p, i, j)) {
                    dp[i][j] = dp[i - 1][j - 1];
                }
            }
        }
    }
    return dp[m][n];
}
// 单个字符匹配
private boolean matches(String s, String p, int i, int j) {
    if (i == 0) {
        return false;
    }
    if (p.charAt(j - 1) == '.') {
        return true;
    }
    return s.charAt(i - 1) == p.charAt(j - 1);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值