大模型面试系列(五)| Transformer面试题汇总之训练与优化

了解Transformer的训练和优化策略可以展示面试者在深度学习和自然语言处理领域的专业能力。面试官经常会询问有关模型训练和优化的问题,以评估面试者分析问题和解决问题的能力。

在准备面试时,可以重点复习以下知识点:

  • 模型的监督学习和无监督学习策略。
  • 正则化技术,如Dropout、权重衰减等,以及它们在防止过拟合中的作用。
  • 学习率调整策略,如学习率衰减、周期性调整等。
  • 批归一化(Batch Normalization)与层归一化(Layer Normalization)的比较和应用。
  • 优化算法,如SGD、Adam、RMSprop等,以及它们在不同情况下的适用性。
  • 模型的评估指标和验证方法。
  • 多任务学习和迁移学习在Transformer中的应用。
  • 模型的可扩展性和在大规模数据集上的训练技巧。

面试题:训练与优化篇

1.Transformer中的可训练Queries、Keys和Values矩阵从哪儿来?

在Transformer模型中,可训练的Queries(Q)、Keys(K)和Values(V)矩阵来源于模型的第一层输入表示,即词嵌入(Word Embeddings)和(可选的)位置编码(Positional Encoding)。

在Transformer架构中,输入序列首先被转换为词嵌入向量,这些向量捕获了词汇的语义信息。如果模型配置了位置编码,这些编码将被添加到词嵌入向量中,以提供序列中每个元素的位置信息。这样,每个输入词项都被表示为一个包含词义和位置信息的向量。

接下来,这些综合的嵌入向量被分别乘以三个不同的权重矩阵来生成Q、K和V矩阵:

  • Queries(Q):这些是与当前处理的元素相关的向量,用于查询其他元素的信息。
  • Keys(K):这些向量包含了序列中每个元素的键信息,它们将与Q进行比较以确定注意力权重。
  • Values(V):这些向量包含了序列中每个元素的实际值信息,它们将根据由Q和K确定的注意力权重进行加权求和。

这些权重矩阵是模型在训练过程中通过反向传播算法学习得到的。在每个训练步骤中,模型的损失函数评估预测输出与真实标签之间的差异,然后通过梯度下降(或其他优化器)更新这些权重矩阵,以最小化损失并提高模型的性能。

在多头注意力机制中,Q、K和V会被进一步分割成多个头,每个头都有自己的一套权重矩阵。这样,模型可以并行地从不同的表示子空间学习信息,增强了模型的表达能力。

Transformer中的Q、K和V矩阵是通过将输入序列的词嵌入和位置编码与模型的可训练权重矩阵相乘得到的。这些权重矩阵在训练过程中不断更新,以更好地捕捉输入数据的复杂特征和关系。


2.Transformer的Feed Forward层在训练的时候到底在训练什么?

在Transformer模型中,Feed Forward(前馈)层是每个编码器和解码器中的关键组成部分。它们在训练过程中主要负责以下任务:

  • 特征转换:Feed Forward层的主要功能是将注意力层的输出进行进一步的特征转换。这通常通过一个线性变换实现,即一个全连接的神经网络层。

  • 非线性激活:在进行线性变换后,Feed Forward层通常会应用一个非线性激活函数,如ReLU(Rectified Linear Unit)。这个激活函数引入了非线性特性,允许模型学习更复杂的特征表示。

  • 参数学习:在训练过程中,Feed Forward层的权重和偏置是可训练的参数。这些参数通过反向传播算法和梯度下降进行更新,以最小化模型的损失函数。

  • 增强表达能力:通过在每个注意力头之后添加Feed Forward层,Transformer模型能够更深入地处理和转换输入数据,增强其表达能力。

  • 解决梯度消失问题:由于Feed Forward层通常包含ReLU这样的激活函数,它们有助于缓解深层网络中的梯度消失问题,使得深层网络的训练更加稳定。

  • 与注意力机制的协同:Feed Forward层的输出将被送回注意力层,进行下一轮的注意力计算。这种循环机制使得模型能够在不同层次上不断细化和优化其对输入数据的理解。

  • 适应性调整:在训练过程中,模型会根据输入数据和目标任务的需求,调整Feed Forward层的参数,以更好地适应特定的任务,如机器翻译、文本摘要或语言理解。

Transformer的Feed Forward层在训练时主要在训练其权重和偏置参数,以便更好地转换和处理输入数据,增强模型的表达能力,并与注意力机制协同工作,最终提高模型在特定任务上的性能。


3.具体分析Transformer的Embeddings层、Attention层和Feedforward层的复杂度。

4.Transformer的Positional Encoding如何表达相对位置关系?

5.Layer Normalization蕴含的神经网络的假设是什么?

6.从数据的角度分析Transformer中的Decoder和Encoder的依存关系。

7.描述Transformer中的Tokenization的数学原理、运行流程、问题及改进方法。

8.描述把self-attention复杂度从O(n^2)降低到O(n)的方案。

9.Bert的CLS能够有效的表达Sentence Embeddings吗?

10.使用BPE进行Tokenization对于Cross-lingual语言模型的意义?

11.如何训练Transformer处理数据量差异大的多类别数据?

12.如何使用多种类小样本对Transformer训练取得好的分类效果?

13.在输入Embeddings时是否可以使用多方来源的词嵌入?

14.更深更宽的Transformer网络是否意味着更强的预训练模型?

15.如何降低Transformer中Embedding中的参数数量?

16.描述Trasnformer不同Layer之间的FeedForward神经网络之间的联系。

17.如何降低Transformer的Feedforward层的参数数量?

18.Transformer的Layer深度过深会可能导致什么现象?

19.如何大规模降低Transformer中Embedding中的参数数量?


文末

有需要全套的AI大模型面试题及答案解析资料的小伙伴,可以微信扫描下方CSDN官方认证二维码,免费领取【保证100%免费

在这里插入图片描述

  • 3
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值