题目
给一个数组C,长度为n(n<=50),每个数字的范围是2^m(m<=15),
然后要求构造一个数组a,满足
1、a[i] % C[i] !=0 ;
2、a[i] < 2^m ;
3、a[i] & a[i+1] = 0;
问满足条件的方案数有多少种。
思路来源
https://blog.csdn.net/WeYoungg/article/details/77073140?locationNum=6&fps=1
题解
dp[i][j]代表前i个数,最后一个数填j的方案数
dp[i][j]+=dp[i-1][k](k&j==0)
k&j==0可以转化为,k是 j的补集 的子集
需要高效统计子集的和,高维前缀和
高维前缀和
思路来源:
https://www.cnblogs.com/Miracevin/p/9778266.html
感觉这一篇讲的最详细,每一维分别做前缀和,然后再相加
那状压dp中的高维前缀和,其实就是n维的每一维,
子集计算时,dp[0][0][0][1]+=dp[0][0][0][0],诸如此类,
超集计算时,dp[1][1][1][0]+=dp[1][1][1][1],01互换一下即可
枚举所有子集的方法是,而此处,
子集前缀和
for(int j=0;j<m;++j)//k是k的所有子集的前缀和
{
for(int k=0;k<up;++k)
if(k&(1<<j))sum[k]=(sum[k]+sum[k^(1<<j)])%mod;
}
超集前缀和
for(int j=0;j<m;++j)//k是k的所有子集的前缀和
{
for(int k=0;k<up;++k)
if(!(k&(1<<j)))sum[k]=(sum[k]+sum[k|(1<<j)])%mod;
}
代码
#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
typedef long long ll;
const int mod=1e9;
const int M=15;
const int N=51;
int T,n,m,mx,up;
//dp[i][j]:到第i个数 以j结尾的方案数
int c[N],dp[N][1<<M],sum[1<<M],ans;
int main()
{
scanf("%d",&T);
while(T--)
{
ans=0;
memset(dp,0,sizeof dp);
scanf("%d%d",&n,&m);
for(int i=1;i<=n;++i)
scanf("%d",&c[i]);
up=(1<<m);mx=(1<<m)-1;
for(int j=0;j<up;++j)
{
if(j%c[1]==0)continue;
dp[1][j]=1;
sum[j]=1;
}
for(int i=2;i<=n;++i)
{
for(int j=0;j<up;++j)
{
sum[j]=dp[i-1][j];
}
for(int j=0;j<m;++j)//k是k的所有子集的前缀和
{
for(int k=0;k<up;++k)
if(k&(1<<j))sum[k]=(sum[k]+sum[k^(1<<j)])%mod;
}
for(int j=0;j<up;++j)
{
dp[i][j]=sum[mx^j];
if(j%c[i]==0)dp[i][j]=0;
}
memset(sum,0,sizeof sum);
}
for(int j=0;j<up;++j)
{
ans=(ans+dp[n][j])%mod;
}
printf("%d\n",ans);
}
return 0;
}