KM二分图最大/最小权匹配(板子总结)

心得

听说南京现场赛出了个KM然后卡kuangbin&&lrj板子...

吓得我交一发hdu6346整理个板子,KM的bfs版本

该板子直接求是求最大权匹配,所以取反求最小权匹配

第一个的是最好用的,不过还是多带几个板子,万一被卡了呢……

代码1

//KM模板 
//本题hdu6346 用于求二分图最小权匹配 
//如果边权不取反 则用于求二分图最大权匹配
//否则边权取反之后再对答案取反 用于求二分图最小权匹配 
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=205;
const ll INF=0x3f3f3f3f3f3f3f3fll;
int t,n;
struct KM{
	int n,m[N],way[N];
	ll w[N][N],lx[N],ly[N],sl[N];
	bool u[N];
	void init(){
		scanf("%d",&n);
		for(int i=1;i<=n;++i){
			for(int j=1;j<=n;++j){
				scanf("%lld",&w[i][j]);
				w[i][j]=-w[i][j];
			}
		}
	}
	void hungary(int x){
		m[0]=x;
		int j0=0;
		fill(sl,sl+n+1,INF);
		fill(u,u+n+1,0);
		do{
			u[j0]=1;
			int i0=m[j0],j1=0;
			ll d=INF;
			for(int j=1;j<=n;++j)
			if(u[j]==0){
				ll cur=-w[i0][j]-lx[i0]-ly[j];
				if(cur<sl[j]){sl[j]=cur;way[j]=j0;}
				if(sl[j]<d){d=sl[j];j1=j;}
			}
			for(int j=0;j<=n;++j){
				if(u[j]){lx[m[j]]+=d;ly[j]-=d;}
				else sl[j]-=d;
			}
			j0=j1;
		}while(m[j0]!=0);
		do{
			int j1=way[j0];m[j0]=m[j1];j0=j1;
		}while(j0);
	}
	ll solve(){
		for(int i=1;i<=n;++i)m[i]=lx[i]=ly[i]=way[i]=0;
		for(int i=1;i<=n;++i)hungary(i);
		ll sum=0;
		for(int i=1;i<=n;++i)sum+=w[m[i]][i];
		return sum;
	}
}q;
int main()
{
	scanf("%d",&t);
	for(int c=1;c<=t;++c){
		q.init();
		printf("Case #%d: %lld\n",c,-q.solve());
	}
	return 0;
} 

代码2

#include <bits/stdc++.h>
using namespace std;
#define LL long long
#define inf 1000000000000ll
inline int read() {
    char ch = getchar(); int x = 0, f = 1;
    while(ch < '0' || ch > '9') {
        if(ch == '-') f = -1;
        ch = getchar();
    }
    while('0' <= ch && ch <= '9') {
        x = x * 10 + ch - '0';
        ch = getchar();
    }
    return x * f;
}
namespace KM{
    #define M 410
    int n;
    LL A[M], B[M], mn[M];
    int w[M][M], lk[M], way[M];
    bool vis[M];
    inline void km(){
        memset(lk, -1, sizeof(lk));
        for(int x = 1; x <= n; ++ x) {
            lk[0] = x;
            int j0 = 0;
            memset(vis, 0, sizeof(vis));
            memset(mn, 0x3f, sizeof(mn));
            do{
                vis[j0] = true;
                int i0 = lk[j0], j1; 
                LL num = inf;
                for(int j = 1; j <= n; ++ j){
                    if(!vis[j]){
                        LL t = A[i0] + B[j] - w[i0][j];
                        if(t < mn[j]) mn[j] = t, way[j] = j0;
                        if(mn[j] < num) num = mn[j], j1 = j;
                    }
                }
                for(int j = 0; j <= n; ++ j){
                    if(vis[j]) A[lk[j]] -= num, B[j] += num;
                    else mn[j] -= num;
                } 
                //cerr << x <<endl;
                j0 = j1;
            } while(~lk[j0]);
            do{
                int j1 = way[j0];
                lk[j0] = lk[j1];
                j0 = j1;
            } while(j0);    
        }
    }
    inline LL getsum(){
        LL ret = 0;
        for(int i = 1; i <= n; ++ i) ret += A[i], ret += B[i];
        return ret;
    }
} 
signed main() {
    //int TT = clock();
    int T;
    scanf("%d", &T);
    for(int Ca = 1; Ca <= T; ++ Ca) {
        scanf("%d", &KM::n);
        for(int i = 1; i <= KM::n; ++ i) {
            for(int j = 1; j <= KM::n; ++ j) {
                KM::w[i][j] = read();
                KM::w[i][j] *= -1;
            }
        }
        //cerr << 2333 << endl;
        KM::km();
        printf("Case #%d: %I64d\n", Ca, -KM::getsum());
    }
    //cerr << clock() - TT;
}

代码3

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=207,NPOS=-1;
const ll INF=0x3f3f3f3f3f3f3f3f;
struct Matrix
{
    int n;
    ll a[N][N];
};
struct KuhnMunkres:Matrix
{
    ll hl[N],hr[N],slk[N];
    int fl[N],fr[N],vl[N],vr[N],pre[N],q[N],ql,qr;
    int check(int i)
    {
        if(vl[i]=1,fl[i]!=NPOS)return vr[q[qr++]=fl[i]]=1;
        while(i!=NPOS)swap(i,fr[fl[i]=pre[i]]);
        return 0;
    }
    void bfs(int s)
    {
        fill(slk,slk+n,INF);
        fill(vl,vl+n,0);
        fill(vr,vr+n,0);
        q[ql=0]=s;
        vr[s]=qr=1;
        for(ll d;;)
        {
            for(; ql<qr; ++ql)
                for(int i=0,j=q[ql]; i<n; ++i)
                    if(d=hl[i]+hr[j]-a[i][j],!vl[i]&&slk[i]>=d)
                        if(pre[i]=j,d)slk[i]=d;
                        else if(!check(i))return;
            d=INF;
            for(int i=0; i<n; ++i)
                if(!vl[i]&&d>slk[i])d=slk[i];
            for(int i=0; i<n; ++i)
            {
                if(vl[i])hl[i]+=d;
                else slk[i]-=d;
                if(vr[i])hr[i]-=d;
            }
            for(int i=0; i<n; ++i)
                if(!vl[i]&&!slk[i]&&!check(i))return;
        }
    }
    void ask()
    {
        fill(pre,pre+n,NPOS);
        fill(fl,fl+n,NPOS);
        fill(fr,fr+n,NPOS);
        fill(hr,hr+n,0);
        for(int i=0; i<n; ++i)hl[i]=*max_element(a[i],a[i]+n);
        for(int j=0; j<n; ++j)bfs(j);
    }
} km;
int main()
{
    int n,nl,nr;
    int QAQ,kase=0;
    scanf("%d",&QAQ);
    while(QAQ--)
    {
        scanf("%d",&n);
        nl=n,nr=n;
        for(int i=0;i<n;i++)
        {
            for(int j=0;j<n;j++)
            {
                scanf("%lld",&km.a[i][j]);
                km.a[i][j]=-km.a[i][j];
            }
        }
        km.n=max(nl,nr);
        km.ask();
        long long ans=0;
        for(int i=0; i<nl; ++i)
            if(km.fl[i]!=NPOS)
                ans+=km.a[i][km.fl[i]];
        printf("Case #%d: %lld\n",++kase,-ans);
    }
}

 

  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
二分图最大匹配是指在一个二分图中,找到一种匹配方式,使得匹配的边的重之和最大。 首先,二分图是指一个图中的所有节点可以被分为两个不相交的集合,并且图中的每条边都连接着一个集合中的节点和另一个集合中的节点。 二分图最大匹配可以用多种算法来求解,包括匈牙利算法、KM算法等等。其中,匈牙利算法是一种经典的求解二分图最大匹配问题的算法。 以下是匈牙利算法的基本思想和步骤: 1. 初始化:将每个节点都标记为未匹配状态。 2. 对于二分图中的每个节点,依次进行匹配。 3. 对于每个未匹配的节点,尝试找到它可以匹配的节点。具体地,对于一个未匹配的节点,从它所在的集合中选择一个节点,然后尝试将它们匹配起来。如果匹配成功,则将两个节点标记为已匹配状态。 4. 如果一个节点无法匹配,则尝试将它和其他未匹配的节点匹配。如果仍然无法匹配,则返回失败。 5. 当所有节点都被匹配完毕时,算法结束。 在匈牙利算法的实现中,可以使用增广路径来优化匹配过程。增广路径是指一条从未匹配的节点出发,经过一系列已匹配的节点,最终到达另一个未匹配的节点的路径。 具体地,增广路径的求解步骤如下: 1. 从一个未匹配的节点开始,沿着未匹配的节点尝试匹配。 2. 如果找到了一个匹配节点,则从该匹配节点开始,继续沿着未匹配的节点尝试匹配。 3. 如果最终找到了一个未匹配的节点,则说明找到了一条增广路径。 在匈牙利算法中,每次找到一条增广路径时,可以将该路径上的匹配状态进行调整,使得当前的匹配数量增加一。由于增广路径的搜索过程可以通过 DFS 或 BFS 进行,因此匈牙利算法的时间复杂度为 $O(NM)$,其中 $N$ 和 $M$ 分别表示二分图的两个集合中的节点数。 需要注意的是,虽然匈牙利算法的实现比较简单,但是对于大规模的图来说,它的时间复杂度可能较高,而且可能会存在一些性能问题。因此,在实际应用中,可能需要使用一些更加高效的算法来求解二分图最大匹配问题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Code92007

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值