题目
n(1<=n<=200)场比赛,每场比赛都必须参加,
现在要求至少获胜其中的l(0<=l<=200)场,比赛的奖励分两种,奖品或背包
第i场比赛有两个参数pi和ai,pi为获胜概率(0<=pi<=100),
ai为-1时,代表这是一件奖品,ai为正数(1<=ai<=200)时,代表这是一件容量为ai的背包
现在你可以从家额外带去容量为k(0<=k<=200)的背包,
求满足至少获胜场次l和所有获胜的奖品都能装进背包的概率
题解
肯定得开一维给背包容量,dp[i][j][l]表示前i场赢了j场当前背包容量为l的概率
初始情况下dp[0][0][k]置1,后续转移通过讨论这一场输还是赢,考虑胜场j和背包容量l的变化
注意,本题只能用刷后继的写法,因为数组空间有限只能开400,如果能开200*200就无所谓了
把mx视作一个背包无限容量的状态,所有奖品都装的下,用前驱无法判断无限来自哪些前驱
最后满足j>=l且l>=0的dp[n][j][l]概率之和即为所求,因为有负数,加偏移量200
代码
#include<bits/stdc++.h>
using namespace std;
const int N=205;
int n,L,K,p[N],a[N],cnt,tot;
double dp[N][N][2*N],win,lose,ans;
int main()
{
scanf("%d%d%d",&n,&L,&K);
for(int i=0;i<n;++i)
scanf("%d",&p[i]);
for(int i=0;i<n;++i)
scanf("%d",&a[i]);
dp[0][0][K+N]=1;
int mx=2*N-2;
for(int i=0;i<n;++i)
{
win=p[i]/100.0;lose=(100-p[i])/100.0;
for(int j=0;j<=i;++j)
{
for(int k=0;k<=mx;++k)
{
int nex=min(k+a[i],mx);
dp[i+1][j][k]+=dp[i][j][k]*lose;
if(nex>=0)dp[i+1][j+1][nex]+=dp[i][j][k]*win;
}
}
}
for(int j=L;j<=n;++j)
{
for(int k=N;k<=mx;++k)
{
ans+=dp[n][j][k];
}
}
printf("%.7lf\n",ans);
return 0;
}
/*
116 45 102
8 94 41 63 1 0 7 78 14 10 50 15 3 33 79 48 96 93 87 52 1 29 89 31 9 75 59 16 9 21 62 27 99 84 98 31 81 47 7 55 15 47 46 75 11 54 65 25 95 44 16 8 49 85 96 13 84 1 64 95 45 60 61 95 15 94 99 59 82 97 81 31 8 19 100 4 79 62 43 32 46 49 31 54 91 92 53 21 32 34 46 88 70 10 70 40 98 70 28 77 18 46 9 27 56 27 16 81 15 80 23 73 84 55 27 79
-1 27 -1 25 7 41 3 -1 13 -1 6 2 12 -1 -1 2 8 26 1 1 26 7 6 31 -1 1 -1 7 4 19 10 -1 18 16 -1 14 -1 -1 -1 -1 33 24 -1 -1 -1 12 49 29 -1 -1 58 6 -1 -1 25 -1 34 41 2 -1 21 15 24 76 -1 13 -1 7 23 4 41 12 11 40 9 19 11 -1 -1 9 -1 29 -1 25 2 8 16 -1 1 3 5 17 4 -1 29 18 1 24 1 2 -1 35 -1 -1 -1 4 39 22 -1 -1 -1 24 26 14 -1 51
*/