洛谷P4137 Rmq Problem / mex(区间mex/主席树)

题目

有一个长度为 n(n<=2e5) 的数组 \{a_1,a_2,\ldots,a_n\}(0<=ai<=1e9)。

m(m<=2e5)次询问,第i次询问给出一个区间(li,ri),

询问该区间内,没有出现过的最小自然数。

思路来源

https://www.luogu.com.cn/problem/solution/P4137

题解

bzoj3339/bzoj3585 静态区间mex

首先,第i棵树维护的是只考虑[1,i]的值时,值域的最右位置,贪心

注意到答案只可能在[0,n]中,故直接忽略>n的ai值,令root[i]继承root[i-1],

否则,则更新最右位置,pushup的时候维护区间最右位置的最小值,

对于询问[l,r],去查询第r棵树的值域对应的位置,

如果左子树的位置最小值>=l,说明左子树的值都存在,则访问右子树,否则访问左子树

 

也可以对原数组离散化,未出现的最小自然数只有可能是 0 或是 1+ai,

因此只需对元素0、ai,1+ai离散化

 

本题也有莫队做法,很暴力,首先把区间按块排序,再考虑add和del,

del时,如果删掉了一个小值,mex如果变小,就O(1)更新,

add时,如果把原来的mex出现次数+1,就O(暴力)往上找最小的mex

复杂度,按评论区来说,似乎是假的,所以这里就不写了

 

线段树二分的做法,考虑把区间离线,按右端点排增序,

类似主席树的处理过程,一边询问一边询问,于是一棵线段树就解决了

代码(主席树)

#include<bits/stdc++.h>
using namespace std;
const int N=2e5+10;
int n,m,l,r,a[N];
int root[N],ls[50*N],rs[50*N],rig[50*N],c;
//每棵主席树维护每个值出现的当前最右位置
void upd(int l,int r,int &cur,int las,int pos,int v){
	cur=++c;
    ls[cur]=ls[las];rs[cur]=rs[las];
	if(l==r){
        rig[cur]=v;
        return;
	}
	int mid=(l+r)/2;
	if(pos<=mid)upd(l,mid,ls[cur],ls[las],pos,v);
	else upd(mid+1,r,rs[cur],rs[las],pos,v);
	rig[cur]=min(rig[ls[cur]],rig[rs[cur]]);//若区间min>=l 则所有>=l
}
int ask(int cur,int l,int r,int v){
    if(!cur || l==r){
        return l;
    }
    int mid=(l+r)/2;
	if(rig[ls[cur]]<v){
        return ask(ls[cur],l,mid,v);
	}
	return ask(rs[cur],mid+1,r,v);
}
int main(){
    scanf("%d%d",&n,&m);
    for(int i=1;i<=n;++i){
        scanf("%d",&a[i]);
        if(a[i]>n){
            root[i]=root[i-1];
        }
        else{
            upd(0,n,root[i],root[i-1],a[i],i);//值域区间中 当前区间出现的最大位置
        }
    }
    while(m--){
        scanf("%d%d",&l,&r);
        printf("%d\n",ask(root[r],0,n,l));//最小的值域区间中 位置<l的值
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小衣同学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值