题目
有一个长度为 n(n<=2e5) 的数组 (0<=ai<=1e9)。
m(m<=2e5)次询问,第i次询问给出一个区间(li,ri),
询问该区间内,没有出现过的最小自然数。
思路来源
https://www.luogu.com.cn/problem/solution/P4137
题解
bzoj3339/bzoj3585 静态区间mex
首先,第i棵树维护的是只考虑[1,i]的值时,值域的最右位置,贪心
注意到答案只可能在[0,n]中,故直接忽略>n的ai值,令root[i]继承root[i-1],
否则,则更新最右位置,pushup的时候维护区间最右位置的最小值,
对于询问[l,r],去查询第r棵树的值域对应的位置,
如果左子树的位置最小值>=l,说明左子树的值都存在,则访问右子树,否则访问左子树
也可以对原数组离散化,未出现的最小自然数只有可能是 0 或是 1+ai,
因此只需对元素0、ai,1+ai离散化
本题也有莫队做法,很暴力,首先把区间按块排序,再考虑add和del,
del时,如果删掉了一个小值,mex如果变小,就O(1)更新,
add时,如果把原来的mex出现次数+1,就O(暴力)往上找最小的mex
复杂度,按评论区来说,似乎是假的,所以这里就不写了
线段树二分的做法,考虑把区间离线,按右端点排增序,
类似主席树的处理过程,一边询问一边询问,于是一棵线段树就解决了
代码(主席树)
#include<bits/stdc++.h>
using namespace std;
const int N=2e5+10;
int n,m,l,r,a[N];
int root[N],ls[50*N],rs[50*N],rig[50*N],c;
//每棵主席树维护每个值出现的当前最右位置
void upd(int l,int r,int &cur,int las,int pos,int v){
cur=++c;
ls[cur]=ls[las];rs[cur]=rs[las];
if(l==r){
rig[cur]=v;
return;
}
int mid=(l+r)/2;
if(pos<=mid)upd(l,mid,ls[cur],ls[las],pos,v);
else upd(mid+1,r,rs[cur],rs[las],pos,v);
rig[cur]=min(rig[ls[cur]],rig[rs[cur]]);//若区间min>=l 则所有>=l
}
int ask(int cur,int l,int r,int v){
if(!cur || l==r){
return l;
}
int mid=(l+r)/2;
if(rig[ls[cur]]<v){
return ask(ls[cur],l,mid,v);
}
return ask(rs[cur],mid+1,r,v);
}
int main(){
scanf("%d%d",&n,&m);
for(int i=1;i<=n;++i){
scanf("%d",&a[i]);
if(a[i]>n){
root[i]=root[i-1];
}
else{
upd(0,n,root[i],root[i-1],a[i],i);//值域区间中 当前区间出现的最大位置
}
}
while(m--){
scanf("%d%d",&l,&r);
printf("%d\n",ask(root[r],0,n,l));//最小的值域区间中 位置<l的值
}
return 0;
}