牛客挑战赛36 D.排名估算(期望/贝叶斯公式/自然数幂和/第二类斯特林数)

题目

为了知道自己的排名,小C使用了系统中的“好友伴学”功能。

每次,系统会在除了小C之外的所有考生中随机抽取一名,然后返回Ta的排名比小C高还是低。

这次考试有n(2<=n<=1e11)个人参加,可以认为小C的排名是一个在[1,n]内等概率随机的整数。

小C总共使用的m(0<=m<=5e3)次“好友伴学”功能,却没有一次抽中排名比自己高的人。

请问小C在这次考试中的期望排名是多少,

若答案为\frac{p}{q},输出(p*q^{-1})mod\ 998244353

思路来源

题解

【题解】牛客挑战赛36_ACM竞赛_ACM/CSP/ICPC/CCPC/比赛经验/题解/资讯_牛客竞赛OJ_牛客网

学习笔记第五十六节:概率期望-CSDN博客

求自然数幂和

【学习笔记】自然数幂和-CSDN博客 第二类斯特林数、伯努利数、插值等

自然数幂和-CSDN博客 扰动法递推

题解

令pi表示排名为第n-i时,m次没抽中的概率

由于排名只可能为[1,n],则p_{i}=(\frac{i}{n-1})^{m},i\epsilon [0,n-1]

令A为m次没抽中,B为排名为i

根据贝叶斯公式,P(A|B)*P(B)=P(B|A)*P(A)

P(A),根据全概率公式打开,即每一种排名下对应的概率之和,P(A)=\sum_{i=0}^{n-1}p_{i}*\frac{1}{n}

P(B)=\frac{1}{n}P(B)=(\frac{i}{n-1})^{m}P(B|A)为所求,

以上各式,代入P(B|A)=\frac{P(A|B)*P(B)}{\sum_{i=0}^{n-1}P(A|B_{j})P(B_{j})}

且注意到,m次没抽中时排名为i的概率为P时,给答案带来的贡献是P*(n-i)

所求式,即\frac{\sum_{i=0}^{n-1}p_{i}*(n-i)}{\sum_{i=0}^{n-1}p_{i}},化简有n-\frac{\sum_{i=0}^{n-1}i^{m+1}}{\sum_{i=0}^{n-1}i^m}

由于题目只要求O(m^2)效率的算法,可以直接递推求解自然数幂和。

法一

\sum^{m}_{i=0}i^n=\sum^{m}_{i=0}\sum^{n}_{j=0}\begin{Bmatrix}n\\j\end{Bmatrix}i^{\underline j}=\sum^{n}_{j=0}\begin{Bmatrix}n\\j\end{Bmatrix}\sum^{m}_{i=0}i^{\underline j}=\sum^{n}_{j=0}\frac{1}{j+1}\begin{Bmatrix}n\\j\end{Bmatrix}(m+1)^{\underline {j+1}}

粘个公式就跑

1/(j+1)逆元搞搞,{n,j}为第二类斯特林数S(n,j),

(m+1)的j+1次下降幂,就是从(m+1)*m*(m-1)*...往下乘,共乘j+1项

代码一

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=5e3+5,mod=998244353;
ll n,m,s[N][N],inv[N];
ll modpow(ll x,ll n,ll mod){
    ll res=1;
    for(;n;n>>=1,x=x*x%mod){
        if(n&1)res=res*x%mod;
    }
    return res;
}
//i从0到n i的m次方之和
ll cal(ll n,ll m){
    ll ans=0,now=1;
    for(int j=0;j<=m;++j){
        now=(n+1-j)%mod*now%mod;
        ans=(ans+1ll*inv[j+1]*s[m][j]%mod*now%mod)%mod;
    }
    return ans;
}
int main(){
    scanf("%lld%lld",&n,&m);
    //第二类斯特林数
    s[0][0]=1;
    for(int i=1;i<N;++i){
        for(int j=0;j<=i;++j){
            s[i][j]=((j-1>=0?s[i-1][j-1]:0)+1ll*j*s[i-1][j]%mod)%mod;
        }
    }
    //逆元
    inv[1]=1;
    for(int i=2;i<N;++i){
        inv[i]=1ll*(mod-inv[mod%i])*(mod/i)%mod;
    }
    printf("%lld\n",(n-(cal(n-1,m+1)*modpow(cal(n-1,m),mod-2,mod)%mod)+mod)%mod);
    return 0;
}

法二

扰动法递推,就是加一项减一项,

对Sk(n)这么展开,可以求Sk-1(n)的值

S_k(n)=\sum\limits_{i=1}^ni^k,有S_k(n)=\dfrac{(n+1)^{k+1}-\sum\limits_{j=0}^{k-1}\binom{k+1}{j}S_j(n)-1}{k+1}

代码二

注意,0的0次方没意义,s[0]的值,只是用来后续s递推,

所以,m=0的询问,结合原题意义,要特判

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=5555,mod=998244353;
ll n,m,c[N][N],inv[N],s[N],ans,res;
ll modpow(ll x,ll n,ll mod){
    ll res=1;
    for(;n;n>>=1,x=x*x%mod){
        if(n&1)res=res*x%mod;
    }
    return res;
}
//求s[i]=(i=0到n i的m次方)之和
void gao(ll n,ll m){
    s[0]=n%mod;
    ll now=(n+1)%mod;
    for(int i=1;i<=m;++i){
        now=(n+1)%mod*now%mod;
        s[i]=(now-1+mod)%mod;
        for(int j=0;j<=i-1;++j){
            s[i]=(s[i]-1ll*c[i+1][j]*s[j]%mod+mod)%mod;
        }
        s[i]=1ll*s[i]*inv[i+1]%mod;
    }
}
int main(){
    scanf("%lld%lld",&n,&m);
    //第二类斯特林数
    c[0][0]=1;
    for(int i=1;i<N;++i){
        c[i][0]=1;
        for(int j=1;j<=i;++j){
            c[i][j]=(c[i-1][j-1]+c[i-1][j])%mod;
        }
    }
    inv[1]=1;
    for(int i=2;i<N;++i){
        inv[i]=1ll*(mod-inv[mod%i])*(mod/i)%mod;
    }
    gao(n-1,m+1);
    if(m==0)printf("%lld\n",(n-(s[1]*modpow(n%mod,mod-2,mod)%mod)+mod)%mod);
    else printf("%lld\n",(n-(s[m+1]*modpow(s[m],mod-2,mod)%mod)+mod)%mod);
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Code92007

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值