题目
1e6*1e6的正方形,四个顶点分别是(0,0)(0,1e6)(1e6,0)(1e6,1e6)
矩形内横着画n(n<=1e5)条线段,竖着画m(m<=1e5)条线段,
保证每条线段的一个端点落在正方形一条边上,保证没有两条线段在同一条直线上
求线段把正方形分成了多少个区域
思路来源
anodiebird代码
hdu6681原题警告
题解
可以把这个区域过程看成是切蛋糕划分区域的过程,
答案是最开始的一块区域+截断的横线数量+截断的竖线数量+横竖线的交点数量
交点数量用扫描线统计,这里采用把横向线段插进去用竖向线段统计的方式,
注意BIT只能>0,所以y挪到了[1,1e6+1],然后把横向线段弄成[l,r+1)的左闭右开形式
代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N=1e6+10,up=1e6;
struct BIT{
int n,tr[N];
void init(int _n){
n=_n;
memset(tr,0,sizeof tr);
}
void add(int x,int v){
for(int i=x;i<=n;i+=i&-i)
tr[i]+=v;
}
int sum(int x){
int ans=0;
for(int i=x;i;i-=i&-i)
ans+=tr[i];
return ans;
}
}tr;
struct node{
int y,pos,op;
bool operator<(node &x)const{
return pos<x.pos || (pos==x.pos && op>x.op);
}
}f[N<<1];
struct edge{
int x,l,r;
bool operator<(edge &y)const{
return x<y.x;
}
}e[N];
ll cal(ll l,ll r){
return tr.sum(r)-tr.sum(l-1);
}
int n,m,c,d,l,r,x,y,cnt[N];
ll ans;
int main(){
scanf("%d%d",&n,&m);
//不考虑四条边线 答案=1+长为1e6的横线+竖线+横纵交点数
ans=1;
for(int i=1;i<=n;++i){
scanf("%d%d%d",&y,&l,&r);
if(l==0 && r==up)ans++;
f[++c]=node{y+1,l,1};
f[++c]=node{y+1,r+1,-1};
}
tr.init(up+1);
sort(f+1,f+c+1);
for(int i=1;i<=m;++i){
scanf("%d%d%d",&x,&l,&r);
e[i]=edge{x,l+1,r+1};
}
sort(e+1,e+m+1);
int now=1;
for(int i=1;i<=m;++i){
while(now<=c && f[now].pos<=e[i].x){
tr.add(f[now].y,f[now].op);
now++;
}
ans+=cal(e[i].l,e[i].r);
if(e[i].l==1 && e[i].r==up+1)ans++;
}
printf("%lld\n",ans);
return 0;
}