题目
一个n*n(n<=100)的网格图,只由'B'、'W'、'?'三种字符构成,'?'表示你填'B'或'W'都可以
现在要确定填?的方案,使得这张网格图中相邻的异色对对数最大
对于(i,j),认为它和(i+1,j)、(i-1,j)、(i,j-1)、(i,j+1)相邻
思路来源
官方题解:https://atcoder.jp/contests/abc193/editorial/817
题解
最大化异色对对数,即最小化同色对对数x,则答案为2*n(n-1)-x
最小化一个值,且网格图,且只有黑白两色,于是想到最小割,
对于相邻的对数来说,BB或WW是要被割掉的边,权值为1的无向边
BB或者WW这种连边方式无法连边,考虑对(i+j)&1的颜色进行取反
这样,就是相邻BW是要被割掉的边,构成了两个集合
B或W是点,是不能被割掉的,设置割掉的代价为INF,
令一个连超级源点ss,一个连超级汇点ee,
由于这道题的限制,每个点的流量最大为4,所以INF=4即可
至于问号为什么不用管,
考虑问号出现在一条BW的路径上的时候,大概是B?W的形式,
割掉B?代表设置?为B,反之割掉?W代表设置为W,再按(i+j)&1搞回去即映射回一种方案
代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#include<map>
using namespace std;
typedef long long ll;
const int INF=0x3f3f3f3f;
const int maxn=1e4+10;
const int maxm=1e5+10;
int level[maxn];
int head[maxn],cnt;
int ss,ee;
struct edge{int v,nex;ll w;}e[maxm];
void init()
{
cnt=0;
memset(head,-1,sizeof head);
}
void add(int u,int v,ll w)
{
e[cnt].v=v;
e[cnt].w=w;
e[cnt].nex=head[u];
head[u]=cnt++;
}
void add2(int u,int v,ll w,bool op)//是否为有向图
{
add(u,v,w);
add(v,u,op?0:w);
}
bool bfs(int s,int t)
{
queue<int>q;
memset(level,0,sizeof level);
level[s]=1;
q.push(s);
while(!q.empty())
{
int x=q.front();
q.pop();
if(x==t)return 1;
for(int u=head[x];~u;u=e[u].nex)
{
int v=e[u].v;ll w=e[u].w;
if(!level[v]&&w)
{
level[v]=level[x]+1;
q.push(v);
}
}
}
return 0;
}
ll dfs(int u,ll maxf,int t)
{
if(u==t)return maxf;
ll ret=0;
for(int i=head[u];~i;i=e[i].nex)
{
int v=e[i].v;ll w=e[i].w;
if(level[u]+1==level[v]&&w)
{
ll MIN=min(maxf-ret,w);
w=dfs(v,MIN,t);
e[i].w-=w;
e[i^1].w+=w;
ret+=w;
if(ret==maxf)break;
}
}
if(!ret)level[u]=-1;//优化,防止重搜,说明u这一路不可能有流量了
return ret;
}
ll Dinic(int s,int t)
{
ll ans=0;
while(bfs(s,t))
ans+=dfs(s,INF,t);
return ans;
}
char s[105][105];
int n;
int f(int x,int y)
{
return x*n+y;
}
int main()
{
init();
scanf("%d",&n);
for(int i=0;i<n;++i)
{
scanf("%s",s[i]);
}
for(int i=0;i<n;++i)
{
for(int j=0;j<n;++j)
{
if(s[i][j]=='?')continue;
if((i+j)&1)
{
s[i][j]^='B'^'W';
}
}
}
ss=n*n+1,ee=n*n+2;
for(int i=0;i<n;++i)
{
for(int j=0;j<n;++j)
{
if(j+1<n)add2(f(i,j),f(i,j+1),1,0);
if(i+1<n)add2(f(i,j),f(i+1,j),1,0);
if(s[i][j]=='B')add2(ss,f(i,j),4,1);
if(s[i][j]=='W')add2(f(i,j),ee,4,1);
}
}
printf("%lld\n",2ll*n*(n-1)-Dinic(ss,ee));
return 0;
}