Codeforces Round #768 (Div. 2) E.Paint the Middle(贪心/区间关系处理)

该博客探讨了一种数值优化问题,涉及在给定元素和操作限制下最大化区间内值为1的计数。通过分析和操作线段,提出了一种删除冗余区间的策略,最终得到不可删除的最少区间集合,从而求得最大和。文章详细介绍了算法思路,包括线段的合并与删除,并提供了C++实现的代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目

n(3<=n<=2e5)个元素,第i个元素有两个值ai(1<=ai<=n)和ci,一开始所有ci均为0,

每次操作,你可以选择三个不同的下标i<j<k,ci=cj=ck=0且ai=ak,然后把cj置为1

允许操作任意次,求最大的sumc之和

思路来源

wyn

题解

显然,对于每个值ai来说,只有最初和最末两个位置有用,对应一条线段

线段内的值,都可以被这条线段内的两个端点搞成1,

操作一:被完整包含的线段是没有用的,可以被删除,

例如,[1,5]包含了[2,4],此时删除[2,4]

操作二:经历操作一后,只有若干段相交的区间了,

此时,再删掉被一前一后完全包含的区间

例如,[1,5][2,6][3,7],[2,6]被一前一后完全包含,此时删[2,6]

最终得到的区间,是不可被再删除的最少个数的区间

假设最后某个段是x个区间前后交在一起的,

则这段内共有x+1个点不可被删除,

例如,[1,5]和[3,7]两个区间套在一起,[1,7]共有3个点不可被删,

统计答案即可

代码

#include<bits/stdc++.h>
using namespace std;
const int N=2e5+10;
int n,a[N],fi[N],las[N],c,x,ans;
struct node{
    int l,r;
}e[N];
bool operator<(node a,node b){
    if(a.l!=b.l)return a.l<b.l;
    return a.r>b.r;
}
int main(){
    scanf("%d",&n);
    for(int i=1;i<=n;++i){
        scanf("%d",&a[i]);
        if(!fi[a[i]])fi[a[i]]=i;
        las[a[i]]=i;
    }
    for(int i=1;i<=n;++i){
        if(fi[i])e[++c]={fi[i],las[i]};
    }
    sort(e+1,e+c+1);
    for(int i=1;i<=c;){
        int nowr=e[i].r,j=i;
        e[++x]=e[i];
        while(j+1<=c && e[j+1].l<=nowr){
            if(e[j+1].r>nowr)e[++x]=e[j+1];//去掉被完整包含的线段,如:[1,5][2,4],删[2,4]
            nowr=max(nowr,e[j+1].r);
            j++;
        }
        i=j+1;
    }
    c=x;
    for(int i=1;i<=c;){
        int nowr=e[i].r,j=i,del=0;
        while(j+1<=c && e[j+1].l<=nowr){
            if(j+2<=c && e[j+2].l<=nowr)del++;//去掉被一前一后包含的线段,如:[1,5][2,6][3,7],删[2,6]
            else nowr=max(nowr,e[j+1].r);
            j++;
        }
        ans+=max(0,nowr-e[i].l+1-(j-i+1-del+1));//剩下j-i+1-del段 共有j-i+1-del+1个点不可删
        i=j+1;
    }
    printf("%d\n",ans);
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小衣同学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值