AtCoder Beginner Contest 283 Ex. Popcount Sum(类欧经典问题:数x在二进制表示下第k位的值)

题目

t(t<=1e5)组样例,每组样例给定n,m,r(1<=m<=n<=1e9,0<=r<m)

求[1,n]这n个数中,所有满足i%m=r的数i的二进制的1的个数之和

即:\sum_{i=1}^{n}[i%m==r]\_\_builtin\_popcount(i)

其中,__builtin_popcount(i)统计的是i的二进制表示中,1的个数

思路来源

(转载)类欧几里得(知识点整理+板子总结)_Code92007的博客-CSDN博客_类欧

cuiaoxiang代码

心得

abc包装了一下就没意识到,三年前写过一次,典中典

就当重新总结一个类欧的板子吧,确实这个板子更快

题解

首先想到按位做,即按二进制每一位统计答案

然后便是一个类欧经典问题,有这样一个套路:


\left [ \frac{x}{2^k} \right ]= \left \lfloor \frac{x}{2^k} \right \rfloor-2*\left \lfloor \frac{x}{2^{k+1}} \right \rfloor

左式:数x在二进制表示下第k位的值是否为1

右式:数x除以2的k次方下取整,减去数x除以2的k+1次方下取整的二倍

此外,注意到,

一个满足i%m=r的序列,形如r,r+m,r+2*m,...

实际是,一个首项为r,公差为m的等差数列

至此,这个题就和JZOJ3492一模一样了,

f函数的原理可参考之前写的那篇:

(转载)类欧几里得(知识点整理+板子总结)_Code92007的博客-CSDN博客_类欧

这里重新总结了一个类欧f函数的板子,更简洁一些,用于求:

f(a,b,c,n)=\sum_{i=0}^{n-1}\left \lfloor \frac{a*i+b}{c} \right \rfloor

代码

#include<bits/stdc++.h>
typedef unsigned long long ull;
using namespace std;
// sum x=0..n-1 floor((ax+b)/c)
ull f(ull a,ull b,ull c,ull n){
    ull ret=0;
    ret+=b/c*n;b%=c;
    ret+=a/c*n*(n-1)/2;a%=c;
    if(a*n+b<c)return ret;
    return ret+f(c,(a*n+b)%c,a,(a*n+b)/c);
}
int main(){
    int t;
    scanf("%d",&t);
    for(int i=1;i<=t;i++){
        ull a,b,n,ans=0;
        scanf("%llu%llu%llu",&n,&a,&b);
        n=(n-b)/a+1;
        for(ull lo=1;lo<=b+a*n;lo=lo+lo){
            ans+=f(a,b,lo,n)-f(a,b,lo+lo,n)*2;
        }
        printf("%llu\n",ans);
    }
}

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小衣同学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值