AtCoder Beginner Contest 289 G. Shopping in AtCoder store(离线凸包/在线凸包上二分/在线动态开点李超树)

文章讲述了如何解决一个关于n个人和m个物品的问题,每个人有特定的动力bi,每个物品有固定价值cj。目标是通过给物品定价来最大化收益。提出了构建凸包或使用李超树的方法来寻找最佳定价策略,从而得到每个物品的最大收益。这是一个离线处理的问题,需要先构建数据结构,然后按顺序处理物品价格,找到最优解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目

n(n<=2e5)个人,m(m<=2e5)个物品,

第i个人的动力是bi(0<=bi<=1e9),第j个物品的价值是cj(0<=cj<=1e9)

Takahashi可以给每个物品定价,其中第j个物品定价pj,

当且仅当bi+cj>=pj时,第i个人会买第j个物品

现在要求商品收益最大化(即最大化买第j个物品的人*pj的总和),

对于每个物品j,输出最大化第j件物品的收益

思路来源

虽然自己搞过去了,但还是总结一下

题解

//(a1+b1)*5 (a2+b1)*4 (a3+b1)*3 (a4+b1)*2 (a5+b1)*1
//(a1+b2)*5 (a2+b2)*4 (a3+b2)*3 (a4+b2)*2 (a5+b2)*1
//c1+b1*5 c2+b1*4 c3+b1*3 c4+b1*2 c5+b1
//2+x*5 6+x*4 8+x*3 2+x*2 4+x
//2+x*5<6+x*4 x<4
//2+x*5<8+x*3 2x<6 x<3

观察这个样例,对于第一个物品来说,

定价x=100+120时,收益5*(100+120)

定价x=200+120时,收益4*(200+120)

...

定价x=b[从大到小第i个值]+c[1]时,收益y=i*(b[i]+c[1])=i*c[1]+i*b[i]

收益可以被视为是y=kx+b的函数,其中k=i,b=i*b[i],x即为c[1]

于是,相当于有n条直线,其中变量是cj,可以视为x

根据x的值从小到大变化,收益y的最优直线,可能是n条中的某一条直线最优

所以,求y值最大的最优直线即可,构建凸包或者在李超树上根据x查询

此处是离线做法,先构建凸包,然后将cj值离线排增序,不断在凸包往前扫,构建答案

因为值域1e9,所以李超树的做法需要动态开点,是一个板子题,

可以参考从zhoukangyang那里借鉴的板子:

动态开点李超树(例题+板子总结)_Code92007的博客-CSDN博客

代码

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef double db;
const db eps=1e-8;
const int N=2e5+10,M=2e5+10;
struct node{
    int c,id;
}f[N];
bool operator<(node a,node b){
    return a.c<b.c;
}
struct line{
    ll k,b;
    ll cal(int x){
        //printf("k:%lld v:%lld b:%lld ans:%lld\n",k,v,b,1ll*k*v+b);
        return 1ll*k*x+b;
    }
}l[N],stk[N];
bool cmp(line a,line b){
    return a.k<b.k||(a.k==b.k && a.b<b.b);
}
db crossx(line a,line b){
    return (b.b-a.b)/(a.k-b.k);
}
int n,m,c,b[N];
ll ans[N];
int main(){
    scanf("%d%d",&n,&m);
    for(int i=1;i<=n;++i){
        scanf("%d",&b[i]);
    }
    sort(b+1,b+n+1,greater<int>());
    for(int i=1;i<=n;++i){
        l[i].k=i;
        l[i].b=1ll*i*b[i];
        //printf("k:%lld b:%lld\n",l[i].k,l[i].b);
    }
    for(int i=1;i<=n;++i){
        while(c){
            if(stk[c].k==l[i].k)c--;
            else if(c>1 && 1ll*(l[i].b-stk[c].b)*(stk[c-1].k-stk[c].k)<=1ll*(stk[c].b-stk[c-1].b)*(stk[c].k-l[i].k))c--;
            else break;
        }
        stk[++c]=l[i];
    }
    for(int i=1;i<=m;++i){
        scanf("%d",&f[i].c);
        f[i].id=i;
    }
    sort(f+1,f+m+1);
    int p=1;
    for(int i=1;i<=m;++i){
        //printf("i:%d c:%d cal:%lld\n",i,f[i].c,stk[p].cal(f[i].c));
        while(p+1<=c && stk[p].cal(f[i].c)<=stk[p+1].cal(f[i].c))p++;
        //printf("i:%d p:%d k:%lld b:%lld\n",i,p,stk[p].k,stk[p].b);
        ans[f[i].id]=stk[p].cal(f[i].c);
    }
    for(int i=1;i<=m;++i){
        printf("%lld%c",ans[i]," \n"[i==m]);
    }
    return 0;
}
//(a1+b1)*5 (a2+b1)*4 (a3+b1)*3 (a4+b1)*2 (a5+b1)*1
//(a1+b2)*5 (a2+b2)*4 (a3+b2)*3 (a4+b2)*2 (a5+b2)*1
//c1+b1*5 c2+b1*4 c3+b1*3 c4+b1*2 c5+b1
//2+x*5 6+x*4 8+x*3 2+x*2 4+x
//2+x*5<6+x*4 x<4
//2+x*5<8+x*3 2x<6 x<3

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小衣同学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值