Codeforces Round 768 (Div. 1) D. Flipping Range(思维题 等价类性质 dp)

文章讲述了如何解决Codeforces竞赛中的D.FlippingRange问题,利用等价类和性质分析,通过dp方法计算最短翻转区间长度,确保所有等价类翻转次数的奇偶性一致。关键步骤包括计算gcd,确定等价类,以及使用性质叠加处理翻转操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目

思路来源

官方题解

洛谷题解

题解

可操作的最短区间长度肯定是gcd,记为g,然后考虑如何dp

考虑g个等价类,每个等价类i,i+g,i+2*g,...

每次翻转长度为g的区间,会同时影响到g个等价类总的翻转的奇偶性,

性质一:只有每个等价类翻的次数奇偶性相同才合法 

性质二:此外,翻1-g和翻2-g+1可以起到翻(1,g+1)效果

等价类内翻两个相邻的,可以类似地叠加成两个不相邻的,推广为(i,i+x*g)

即等价类内如果有偶数个负数,可以两两翻完,奇数个负数,可以剩一个

此外,可以一开始翻一次[1,g],改变每个等价类内负数个数的奇偶性,所以两种情况都考虑

也就是考虑将所有数都翻成正数,

然后按是否操作一次[1,g],决定在等价类内负数个数为奇/偶时将绝对值最小的数回退掉,减掉2倍mn

这就是性质解法

而dp做法,则是注意到性质一后dp即可,dp[i][j]表示i的等价类的数总共被翻了奇/偶次

枚举当前数翻还是不翻,翻的话加1次翻,算-a[i],否则加0次翻,算a[i],

对每个等价类内dp值求和,取翻奇/偶次二者的max

代码1(性质)

// Problem: D. Flipping Range
// Contest: Codeforces - Codeforces Round 768 (Div. 1)
// URL: https://codeforces.com/contest/1630/problem/D
// Memory Limit: 256 MB
// Time Limit: 2000 ms
// 
// Powered by CP Editor (https://cpeditor.org)

#include<bits/stdc++.h>
using namespace std;
#define rep(i,a,b) for(int i=(a);i<=(b);++i)
#define per(i,a,b) for(int i=(a);i>=(b);--i)
typedef long long ll;
typedef double db;
typedef pair<ll,int> P;
#define fi first
#define se second
#define pb push_back
#define dbg(x) cerr<<(#x)<<":"<<x<<" ";
#define dbg2(x) cerr<<(#x)<<":"<<x<<endl;
#define SZ(a) (int)(a.size())
#define sci(a) scanf("%d",&(a))
#define scll(a) scanf("%lld",&(a))
#define pt(a) printf("%d",a);
#define pte(a) printf("%d\n",a)
#define ptlle(a) printf("%lld\n",a)
#define debug(...) fprintf(stderr, __VA_ARGS__)
const int N=1e6+10;
int t,n,m,g,v,a[N];
ll dp[N][2];
//考虑等价类 当前等价类内被翻了奇/偶次 只有每个等价类翻的次数奇偶性相同才合法 
//翻1-k和翻2-k+1可以起到翻(1,k+1)效果 类似地 可以翻(i,i+x*k)
void sol(){
	sci(n),sci(m);	
	ll all=0;
	rep(i,0,n-1){
		sci(a[i]);
		all+=abs(a[i]);
	}
	int g=0;
	rep(i,1,m){
		sci(v);
		g=__gcd(g,v);
	}
	ll sum1=0,sum2=0;
	rep(i,0,g-1){
		int mn=2e9,cnt=0;
		for(int j=i;j<n;j+=g){
			mn=min(mn,abs(a[j]));
			cnt+=(a[j]<0);
		}
		if(cnt&1)sum1+=mn;
		else sum2+=mn;
	}
	printf("%lld\n",all-2ll*min(sum1,sum2));
}
int main(){
	sci(t); // t=1
	while(t--){
		sol();
	}
	return 0;
}

代码2(dp)

// Problem: D. Flipping Range
// Contest: Codeforces - Codeforces Round 768 (Div. 1)
// URL: https://codeforces.com/contest/1630/problem/D
// Memory Limit: 256 MB
// Time Limit: 2000 ms
// 
// Powered by CP Editor (https://cpeditor.org)

#include<bits/stdc++.h>
using namespace std;
#define rep(i,a,b) for(int i=(a);i<=(b);++i)
#define per(i,a,b) for(int i=(a);i>=(b);--i)
typedef long long ll;
typedef double db;
typedef pair<ll,int> P;
#define fi first
#define se second
#define pb push_back
#define dbg(x) cerr<<(#x)<<":"<<x<<" ";
#define dbg2(x) cerr<<(#x)<<":"<<x<<endl;
#define SZ(a) (int)(a.size())
#define sci(a) scanf("%d",&(a))
#define scll(a) scanf("%lld",&(a))
#define pt(a) printf("%d",a);
#define pte(a) printf("%d\n",a)
#define ptlle(a) printf("%lld\n",a)
#define debug(...) fprintf(stderr, __VA_ARGS__)
const int N=1e6+10;
int t,n,m,g,v,a[N];
ll dp[N][2];
//考虑等价类 当前等价类内被翻了奇/偶次 只有每个等价类翻的次数奇偶性相同才合法 
//翻1-k和翻2-k+1可以起到翻(1,k+1)效果 类似地 可以翻(i,i+x*k)
void sol(){
	sci(n),sci(m);	
	rep(i,0,n-1){
		sci(a[i]);
	}
	int g=0;
	rep(i,1,m){
		sci(v);
		g=__gcd(g,v);
	}
	ll sum1=0,sum2=0;
	rep(i,0,g-1){
		dp[i][0]=0;dp[i][1]=-2e9;
		for(int j=i;j<n;j+=g){
			ll x1=dp[i][0],x2=dp[i][1];
			dp[i][0]=max(x1+a[j],x2-a[j]);
			dp[i][1]=max(x1-a[j],x2+a[j]);
		}
		sum1+=dp[i][0];
		sum2+=dp[i][1];
	}
	printf("%lld\n",max(sum1,sum2));
}
int main(){
	sci(t); // t=1
	while(t--){
		sol();
	}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小衣同学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值