题目
n个点,m条双向边
每条边三个参数a,b,c,
代表a->b和b->a的主人是c
当a->b->c的时候,
若a->b与b->c同主,则第二条边没有边权
否则第二条边边权为1,
特别地从起点出发的第一条边的边权一定为1,
问从1号点是否能到达n号点,最小边权是多少
思路来源
https://blog.csdn.net/Originum/article/details/81639081
题解
我开始补凯神补过的题了
我也想过过过过过过的生活
更新的时候,维护一下最后一次更新那个点的最后一条边的主人是谁
这样在利用已知结果和下一条边更新的时候,就能实现主人的拼接了
同主cost赋0否则赋1,注意双向边4e5
其实和dijkstra计前驱的感觉是类似的
hdu6290拿过来改改就过了
代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#include<cmath>
using namespace std;
const int maxn=1e5+10;
const int maxm=4e5+10;
typedef long long ll;
struct node
{
ll w;
int u,fa;
node(ll ww,int uu,int f):w(ww),u(uu),fa(f){
}
};
bool operator<(node a,node b)
{
return a.w>b.w;
}
struct edge
{
int v,nex,fa;
}e[maxm];
priority_queue<node>q;
int n,m,head[maxn],cnt;
ll dis[maxn];
bool vis[maxn];
void init(int n)
{
memset(head,-1,sizeof head);
memset(vis,0,sizeof vis);
cnt=0;
for(int i=1;i<=n;++i)
dis[i]=2e18;
}
void add(int u,int v,int b)
{
e[cnt].v=v;
e[cnt].nex=head[u];
e[cnt].fa=b;
head[u]=cnt++;
}
void dijkstra(int s)
{
dis[s]=0;
q.push(node(dis[s],s,-1));
while(!q.empty())
{
node tmp=q.top();
q.pop();
ll w=tmp.w;
int u=tmp.u,fa=tmp.fa;
if(vis[u])continue;
vis[u]=1;
for(int i=head[u];~i;i=e[i].nex)
{
int v=e[i].v,now=e[i].fa;
int cost=(fa==now?0:1);
if(dis[v]>dis[u]+cost)
{
dis[v]=dis[u]+cost;
q.push(node(dis[v],v,now));
}
}
}
}
int main()
{
while(~scanf("%d%d",&n,&m))
{
init(n);
while(m--)
{
int u,v,b;
scanf("%d%d%d",&u,&v,&b);
add(u,v,b);
add(v,u,b);
}
dijkstra(1);
if(dis[n]==2e18)puts("-1");
else printf("%lld\n",dis[n]);
}
return 0;
}