EOJ Monthly 2019.3 (based on March Selection) C.线段树(暴搜+剪枝)

博客围绕一道搜索题目展开,介绍思路来源,题解通过if讨论整除和向下取整,优先搜l==1情形,采用逆线段树建树过程。还提及两个剪枝策略,一是右端界大于ans剪掉,二是左半段区间长度短时不存在。作者表示对搜索掌握不足,要补题。

题目

思路来源

海洋&&励宁

题解

那几个if讨论一下整除和向下取整就能搞出来

优先搜向下搜到l==1的情形 

逆线段树建树过程

剪枝有两个,

一个是右端界大于ans直接剪掉,要求的最小的n

另一个是左半段区间长度比[l,r]短的时候一定不存在

心得

我还是对搜索一窍不通啊

顺序搜得也不对,剪枝剪的也不够好

还是要多多向大一学弟们看齐吖

落后就要挨打,好好补题

代码

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<map>
using namespace std;
typedef long long ll;
ll l,r,ans;
int T;
void build(ll l,ll r)
{ 
	if(r>ans||l<1)return;//最小的r 
	if(l==1)
	{
		ans=min(ans,r);
		return;
	}
	if(l-1<r-l+1)return;//[1,l-1][l,r]
	//(l+r+2)/2 (l+r+1)/2 
	ll L1=2*l-r-2,L2=2*l-r-1;
	if((L1+r)/2+1==l&&L1<l)build(L1,r);
	if((L2+r)/2+1==l&&L2<l)build(L2,r);
	//(l+r)/2 (l+r-1)/2 
	ll R1=2*r-l,R2=2*r-l+1;
	if((l+R1)/2==r&&R1>r)build(l,R1);
	if((l+R2)/2==r&&R2>r)build(l,R2);
}
int main()
{    
    scanf("%d",&T);
    while(T--)
    {
    ans=2e9+1;
    scanf("%lld%lld",&l,&r);
	build(l,r);
    printf("%lld\n",ans==2e9+1?-1:ans);
    }
	return 0;
}

 

### 关于 EOJ 3681 的中位数问题解析 #### 题目概述 题目描述了一张由 \( n \) 个点和 \( m \) 条边组成的有向无环图 (DAG),其中每个节点具有一个点权 \( A_i \)[^2]。目标是找到从起点 \( 1 \) 到终点 \( n \) 所有可能路径中的最大中位数值。 --- #### 解题思路分析 为了求解此问题,需考虑以下几个方面: 1. **定义中位数** 对于一条路径上的点权序列,假设其长度为奇数,则中位数为按升序排列后的中间值;若长度为偶数,则通常取两个中间值的平均值作为中位数。 2. **二分查找法的应用** 要最大化路径的中位数,可以通过二分查找来逼近最优解。设定初始范围为所有点权的最大值和最小值之间,并逐步缩小范围直到满足精度条件(即绝对或相对误差小于 \( 10^{-4} \))[^3]。 3. **验证候选中位数的有效性** 给定当前猜测的中位数 \( mid \),通过调整权重重新构建图模型:将大于等于 \( mid \) 的点赋正权值,其余点赋负权值。随后利用动态规划或其他算法判断是否存在总权重非负的可行路径。 4. **实现细节** - 使用拓扑排序处理 DAG 图结构。 - 动态维护前缀和数组以便快速计算子路径权重之和。 以下是基于上述逻辑的具体代码实现: ```python from collections import deque, defaultdict def can_find_non_negative_path(graph, weights, threshold): """检查是否存在一条路径使得经过调整后的权重和 >= 0""" dp = [-float(&#39;inf&#39;)] * len(weights) order = topological_sort(graph) for node in order: if weights[node] >= threshold: current_weight = 1 else: current_weight = -1 dp[node] = max(dp[node], current_weight) for neighbor in graph.get(node, []): dp[neighbor] = max(dp[neighbor], dp[node]) return dp[-1] >= 0 def topological_sort(graph): """对给定的 DAG 进行拓扑排序""" indegree = {node: 0 for node in range(len(graph))} queue = deque() for u in graph: for v in graph[u]: indegree[v] += 1 for node in indegree: if indegree[node] == 0: queue.append(node) result = [] while queue: curr = queue.popleft() result.append(curr) for next_node in graph[curr]: indegree[next_node] -= 1 if indegree[next_node] == 0: queue.append(next_node) return result def find_max_median(n, edges, values): """主函数用于寻找最大中位数""" INF = float(&#39;inf&#39;) low, high = min(values), max(values) precision = 1e-5 graph = defaultdict(list) # 构建邻接表表示的图 for a, b in edges: graph[a].append(b) best_mid = -INF while abs(high - low) > precision: mid = (low + high) / 2 if can_find_non_negative_path(graph, values, mid): best_mid = max(best_mid, mid) low = mid else: high = mid return round((best_mid + low) / 2, 5) # 输入样例测试部分省略... ``` --- #### 复杂度分析 - 时间复杂度主要取决于二分次数以及每次验证操作的时间开销。假设有 \( k \) 层次迭代完成二分过程,则整体时间复杂度大约为 \( O(k \cdot E) \),其中 \( E \) 表示边的数量。 - 空间复杂度则受存储图数据结构的影响,约为 \( O(V+E) \),\( V \) 和 \( E \) 分别代表顶点数目与边数量。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小衣同学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值