蓝桥杯 21位花数

题意

一个21位的数,每一位的21次方之和,等于该数本身,

求所有这样的21位数

思路来源

https://blog.csdn.net/t51645/article/details/55057082

题解

类似整数划分,0-9这10个数,分21位数,

所有可能是C(30,9)=14307150个

 

验证和是否在1e20-(1e21-1)之间,

然后再判断和与枚举的个数是否相等。

 

自己写了一发大数

O(n²)的乘法

256s才跑出来GG

最后答案只有两个

128468643043731391252
449177399146038697307

 

将21位分成三段,用数组维护,就会省不少时间

具体写法回头再补,眼下能做就是了QAQ

 

代码

粘一发自己的大数辣鸡代码好了

#include <iostream>
#include <algorithm> 
#include <string>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <set>
#include <map>
#include <vector>
#include <stack>
#include <queue>
#include <bitset> 
const int INF=0x3f3f3f3f;
const int MOD=1e9+7;
const double eps=1e-7;
typedef long long ll;
#define vi vector<int> 
#define si set<int>
#define pii pair<int,int> 
#define pi acos(-1.0)
#define pb push_back
#define mp make_pair
#define lowbit(x) (x&(-x))
#define sci(x) scanf("%d",&(x))
#define scll(x) scanf("%lld",&(x))
#define sclf(x) scanf("%lf",&(x))
#define pri(x) printf("%d",(x))
#define rep(i,j,k) for(int i=j;i<=k;++i)
#define per(i,j,k) for(int i=j;i>=k;--i)
#define mem(a,b) memset(a,b,sizeof(a)) 
using namespace std;
const int maxn=2500;
struct BigInt
{
    const static int mod=10000;
    const static int LEN=4;
    int a[maxn],len;
    int num[10];
    BigInt()
    {
        memset(a,0,sizeof(a));
        len=1;
    }
    void init(int x)
    {
        memset(a,0,sizeof(a));
        len=0;
        do//四位一存 如123456789存为 6789 2345 1 
        {
            a[len++]=x%mod;
            x/=mod;
        }while(x);
    }
    void Init(const char s[])//重点 123 4567
    {
        memset(a,0,sizeof(a));
        int l=strlen(s),res=0;
        len=l/LEN;
        if(l%LEN)len++;//l/LEN向上取整 len=2 表明需要两个字节能存下 
        for(int i=l-1;i>=0;i-=LEN)
        {
            int t=0,k=max(i-LEN+1,0);//k是找到当前字节的最高位 回退len-1长 防越界 
            for(int j=k;j<=i;j++)t=t*10+s[j]-'0';//从4开始 t临时存储4567 
            a[res++]=t;//将低位存入 
        }
    } 
    int Compare(const BigInt &b)//位多的大 
    {
        if(len<b.len)return -1;
        if(len>b.len)return 1;
        for(int i=len-1;i>=0;i--)//从高位比较 
            if(a[i]<b.a[i])return -1;
            else if(a[i]>b.a[i])return 1;
        return 0;//完全相等的情况 
    }
    BigInt operator +(const BigInt &b)const
    {
        BigInt ans;
        ans.len=max(len,b.len);
        for(int i=0;i<=ans.len;i++)ans.a[i]=0;
        for(int i=0;i<ans.len;i++)
        {
            ans.a[i]+=((i<len)?a[i]:0)+((i<b.len)?b.a[i]:0);//防止越位现象 
            ans.a[i+1]+=ans.a[i]/mod;//向高位进位 
            ans.a[i]%=mod;
        }
        if(ans.a[ans.len]>0)ans.len++;//产生了9999+9999=9998 1的数组高位进位 
        return ans;
    }
    BigInt operator -(const BigInt &b)const//确保被减数大 差为正 
    {
        BigInt ans;
        ans.len=len;
        int k=0;
        for(int i=0;i<ans.len;i++)
        {
            ans.a[i]=a[i]+k-b.a[i];
            if(ans.a[i]<0)ans.a[i]+=mod,k=-1;//向a[i]高位借10000,k=-1下轮生效 
            else k=0;          
        }
        while(ans.a[ans.len-1]==0&&ans.len>1)ans.len--;//把前缀0去掉 如果ans.len=1时说明a=b差为0 
        return ans;
    }
    BigInt operator *(const BigInt &b)const
    {
        BigInt ans;
        for(int i=0;i<len;i++)
        {
            int k=0;
            for(int j=0;j<b.len;j++)
            {
                int temp=a[i]*b.a[j]+ans.a[i+j]+k;//模拟小学生乘法 i*j加到i+j上去 k为低位来的进位 
                ans.a[i+j]=temp%mod;
                k=temp/mod;//k为向高位进的位 下一轮生效 
            }
            if(k!=0)ans.a[i+b.len]=k;//高位进位 99*99=9801 右起第1位*右起第1位还是能到右起第3位的 
        }
        ans.len=len+b.len;//4位数*4位数不会超过8位数  
        while(ans.a[ans.len-1]==0&&ans.len>1)ans.len--;//查出实际长度 
        return ans;
    }
    BigInt operator /(const int &n)const//被确保被除数大 商为正 
    {
        BigInt ans;
        ans.len=len;
        int k=0;
        for(int i=ans.len-1;i>=0;i--)
        {
            k=k*mod+a[i];//k=上一位来的退位*10000+这一位 
            ans.a[i]=k/n;//这一位除以n 
            k=k%n;//这一位除以n的余数送给下一位,i=0最后一位如57/28余的1直接丢掉 取整  
        }
        while(ans.a[ans.len-1]==0&&ans.len>1)ans.len--;
        return ans;
    }
    ll operator %(const int &n)const
    {
        ll ans=0;
    	for(int i=len-1;i>=0;i--)
    	{
    		ans=ans*mod+a[i];
    		if(ans>n)ans%=n;
        }
        return ans;
    }
    void cal()
    {
    	memset(num,0,sizeof(num));
    	num[a[len-1]%10]++;
    	for(int i=len-2;i>=0;--i)
    	{
    		int tmp=a[i];
    		num[tmp%10]++;
    		num[tmp/10%10]++;
    		num[tmp/100%10]++;
    		num[tmp/1000]++;
    	}
    }
    void output()
    {
        printf("%d",a[len-1]);//是多少就是多少 没有前缀0 
        for(int i=len-2;i>=0;i--) 
            printf("%04d",a[i]);//包含前缀0 如0001 
        printf("\n");
    }
};
char s[maxn];
ll t[11],cnt;
int step[10];
BigInt tmp[10];
BigInt low,high,ten,one,a[11],b[11],cal,ans[maxn];
void dfs(int pos,int num)
{
	if(pos==10)
	{
		cal.init(0);
		for(int i=0;i<10;++i)
		{
			tmp[i].init(step[i]);
			cal=cal+tmp[i]*a[i];
		}
		if(!(cal.Compare(low)>=0&&cal.Compare(high)<=0))return; 
		cal.cal();
		for(int i=0;i<10;++i)
		{
			if(step[i]!=cal.num[i])return;
		}
		ans[cnt++]=cal;
		return;
	}
	if(pos<=7&&!num)return;
	if(pos==9)
	{
	 step[pos]=num;
	 dfs(pos+1,0);
    }
	else
	{
	for(int i=0;i<=num;++i)
	{
		step[pos]=i;
	    dfs(pos+1,num-i);
	}
    }
}
int main()
{
	one.init(1);
	ten.init(10);
	low.init(1);
	high.init(1);
	for(int i=0;i<=9;++i)
	{
	 t[i]=i*i*i;
	 b[i].init(t[i]);
    }
    for(int i=1;i<21;++i)low=low*ten;
    high=low;high=high*ten;high=high-one;
    low.output(),high.output();
	for(int j=0;j<=9;++j)
	{
	 a[j].init(t[j]*t[j]*t[j]);
	 a[j]=a[j]*a[j];
	 a[j]=a[j]*b[j];
	 a[j].output();
    } 
    dfs(0,21);//当前位置,还剩多少个数字 
    for(int i=0;i<cnt;++i)
    ans[i].output();
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小衣同学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值