poj1330 Nearest Common Ancestors(lca模板题)

题目

T组样例,N(2<=N<=1e4)个节点,

给出N-1条有向边u->v后,询问一组u和v的lca

思路来源

《挑战程序竞赛》P330-331

题解

lca裸题,用RMQ+ST就好了,其实倍增也是应该掌握的

由于只有一组询问,所以预处理欧拉序dfn

id用来记录dfs序中第一次访问的时间戳

不妨id[u]<id[v],那么lca(u,v)=dfn[[id[u],id[v]中dep值最小的]

心得

大一选拔赛的时候当时不会lca,CCCC的时候还不会lca

现在敲了几道RMQ的ST题之后,终于会魔改ST的板子存下标了

白书的板子太简洁,有时实在不是一件好事啊……

代码

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<vector>
#include<cmath>
using namespace std;
const int maxn=2e4+10;
vector<int>E[maxn];
int T,n,u,v;
int dfn[2*maxn],tot;//欧拉序 
int dep[2*maxn];//各顶点深度 
int id[maxn];//各顶点第一次出现下标 
int dp[maxn][20];
bool vis[maxn];
void dfs(int u,int fa,int d)
{
	id[u]=++tot;
	dfn[tot]=u;
	dep[tot]=d;
	for(int i=0;i<E[u].size();++i)
	{
		int v=E[u][i];
		if(v==fa)continue;
		dfs(v,u,d+1);
		dfn[++tot]=u;
		dep[tot]=d;
	}
}
void ST()
{
	for(int i=1;i<=tot;++i)
	dp[i][0]=i;//存的是最小值的下标 
	for(int len=1;(1<<len)<=tot;++len)
	{
		for(int l=1;l+(1<<len)-1<=tot;++l)
		{
			if(dep[dp[l][len-1]]<dep[dp[l+(1<<(len-1))][len-1]])dp[l][len]=dp[l][len-1];
			else dp[l][len]=dp[l+(1<<(len-1))][len-1];
		}
	}
}
int RMQ(int l,int r)//返回最小值下标 
{
	int len=log(r-l+1)/log(2);
	if(dep[dp[l][len]]<dep[dp[r-(1<<len)+1][len]])return dp[l][len];
	else return dp[r-(1<<len)+1][len];
}
int lca(int u,int v)
{
	int mn=min(id[u],id[v]);
	int mx=max(id[u],id[v]);
	return dfn[RMQ(mn,mx)];
} 
int main()
{
	scanf("%d",&T);
	while(T--)
	{
		scanf("%d",&n);
		for(int i=1;i<=n;++i)
		E[i].clear();
		memset(vis,0,sizeof vis);
		memset(id,0,sizeof id);
	    memset(dep,0,sizeof dep);
	    memset(dfn,0,sizeof dfn);
		for(int i=1;i<n;++i)
		{
		    scanf("%d%d",&u,&v);
			E[u].push_back(v);
			vis[v]=1;	
		}
		for(int i=1;i<=n;++i)
		{
			if(!vis[i])
			{
				dfs(i,-1,0);
				break;
			}
		}
		ST();
		scanf("%d%d",&u,&v);
		printf("%d\n",lca(u,v));
	}
	return 0;
} 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小衣同学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值