凸包&凸包构建最优直线求点最大值(板子整理)

2022年3月6日更新

题目

2017-2018 ICPC Central Quarter Final of Northeastern European Regional Collegiate Programming Contest L. Fence

求凸包后,计算凸包周长,答案再加上2*pi*r

板子一

​
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=2e5+20;
const double pi=acos(-1.0),eps=1e-8;
struct Point{
    double x,y;
    Point(){}  
    Point(double xx,double yy){
        x = xx;
        y = yy;
    }
    Point operator-(const Point a)const{
        return Point(x-a.x,y-a.y);
    }
}p[N],ch[N];
bool cmp(Point a,Point b){
    if(a.x == b.x)  return a.y < b.y;
    return a.x < b.x; 
}
double det (Point a, Point b){  
    return a.x * b.y - a.y * b.x;
}
double sq(double x){
    return x*x;
}
double cal(Point a,Point b){
    return sqrt(sq(a.x-b.x)+sq(a.y-b.y));
}
int ConvexHull(Point *p,int n,Point *ch){
    sort(p,p+n,cmp); 
    int m=0;
    for(int i=0;i<n;i++){
        while(m>1&&det(ch[m-1]-ch[m-2],p[i]-ch[m-2])<=eps)m--;
        ch[m++]=p[i];
    }
    int k=m;
    for(int i=n-2;i>=0;i--){
        while(m>k&&det(ch[m-1]-ch[m-2],p[i]-ch[m-2])<=eps)m--;
        ch[m++]=p[i];
    }
    if(n>1)m--;
    return m;
}
int n,k,c;
double r,ans;
int main(){
    scanf("%d%lf",&n,&r);
    for(int i=0;i<n;++i){
        scanf("%d",&k);
        while(k--){
            scanf("%lf%lf",&p[c].x,&p[c].y);
            c++;
        }
    }
    int x=ConvexHull(p,c,ch);
    ans=cal(ch[0],ch[x-1])+2.0*pi*r;
    for(int i=1;i<x;++i){
        ans+=cal(ch[i],ch[i-1]);
    }
    printf("%.5lf\n",ans);
    return 0;
}

板子二

函数更全面一些

#include <bits/stdc++.h>
#define REP(i,n) for(int i=0;i<n;++i)
using namespace std;

const double EPS = 1e-8;
inline int sign(double a){
    return a < -EPS ? -1 : a > EPS;
}
 
struct Point{
    double x, y;
    Point(){}
    Point(double _x, double _y):x(_x), y(_y){}
    Point operator+(const Point&p)const{
        return Point(x+p.x, y+p.y);
    }
    Point operator-(const Point&p)const{
        return Point(x-p.x, y-p.y);
    }
    Point operator*(double d)const{
        return Point(x*d, y*d);
    }
    Point operator/(double d)const{
        return Point(x/d, y/d);
    }
    bool operator<(const Point&p)const{
        int c=sign(x-p.x);
        if(c)return c==-1;
        return sign(y-p.y)==-1;
    }
    double dot(const Point&p)const{
        return x*p.x+y*p.y;
    }
    double det(const Point&p)const{
        return x*p.y-y*p.x;
    }
    double alpha()const{
        return atan2(y,x);
    }
    double distTo(const Point&p)const{
        double dx=x-p.x,dy=y-p.y;
        return hypot(dx,dy);
    }
    double alphaTo(const Point&p)const{
        double dx=x-p.x,dy=y-p.y;
        return atan2(dy,dx);
    }
    void read(){
        scanf("%lf%lf",&x,&y);
    }
    double abs(){
        return hypot(x,y);
    }
    double abs2(){
        return x*x+y*y;
    }
    void write(){
        cout<<"("<<x<<","<<y<<")"<<endl;
    }
};

#define cross(p1,p2,p3) ((p2.x-p1.x)*(p3.y-p1.y)-(p3.x-p1.x)*(p2.y-p1.y))
#define crossOp(p1,p2,p3) sign(cross(p1,p2,p3))
 
Point isSS(Point p1, Point p2, Point q1, Point q2){
    double a1=cross(q1,q2,p1),a2=-cross(q1,q2,p2);
    Point temp;
    temp.x=sign((p1.x*a2+p2.x*a1)/(a1+a2))==0?0:(p1.x*a2+p2.x*a1)/(a1+a2);
    temp.y=sign((p1.y*a2+p2.y*a1)/(a1+a2))==0?0:(p1.y*a2+p2.y*a1)/(a1+a2);
    return temp;
}
 
vector<Point> convexHull(vector<Point> ps){
    int n=ps.size();
    if(n<=1)return ps;
    sort(ps.begin(), ps.end());
    vector<Point> qs;
    for(int i=0;i<n;qs.push_back(ps[i++])){
        while(qs.size()>1 && crossOp(qs[qs.size()-2],qs.back(),ps[i])<=0){
            qs.pop_back();
        }
    }
    for(int i=n-2,t=qs.size();i>=0;qs.push_back(ps[i--])){
        while(qs.size()>t && crossOp(qs[qs.size()-2],qs.back(),ps[i])<=0){
             qs.pop_back();
        }
    }
    qs.pop_back();
    return qs;
}
 
int main(){
    int n;
    double r;
    cin>>n>>r;
    vector<Point>ps;
    vector<Point>qs;
    Point temp;
    for(int i=1;i<=n;i++){
        int k;
        cin>>k;
        while(k--){
            temp.read();
            ps.push_back(temp);
        }
    }
    qs=convexHull(ps);
    int l=qs.size();
    double sum=0;
    for(int i=0;i<l;i++){
        sum+=qs[i].distTo(qs[(i+1)%l]);
    }
    sum+=2.0*acos(-1.0)*r;
    cout<<fixed<<setprecision(5)<<sum<<endl;
    return 0;
}

2023年2月12日更新

题目:ABC289 G - Shopping in AtCoder store

构建建最优直线的凸包,即能取到最大值的若干条直线,然后求横坐标x对应的y=kx+b最大值,

在凸包上二分或者离线增序遍历均可

#include <bits/stdc++.h>

using i64 = long long;
using T = long long;

struct Point {
    T x;
    T y;
    Point(T x = 0, T y = 0) : x(x), y(y) {}
    
    Point &operator+=(const Point &p) {
        x += p.x, y += p.y;
        return *this;
    }
    Point &operator-=(const Point &p) {
        x -= p.x, y -= p.y;
        return *this;
    }
    Point &operator*=(const T &v) {
        x *= v, y *= v;
        return *this;
    }
    friend Point operator-(const Point &p) {
        return Point(-p.x, -p.y);
    }
    friend Point operator+(Point lhs, const Point &rhs) {
        return lhs += rhs;
    }
    friend Point operator-(Point lhs, const Point &rhs) {
        return lhs -= rhs;
    }
    friend Point operator*(Point lhs, const T &rhs) {
        return lhs *= rhs;
    }
};

T dot(const Point &a, const Point &b) {
    return a.x * b.x + a.y * b.y;
}

T cross(const Point &a, const Point &b) {
    return a.x * b.y - a.y * b.x;
}

int main() {
    std::ios::sync_with_stdio(false);
    std::cin.tie(nullptr);
    
    int n, m;
    std::cin >> n >> m;
    
    std::z b(n);
    for (int i = 0; i < n; i++) {
        std::cin >> b[i];
    }
    std::sort(b.begin(), b.end(), std::greater());
    
    std::vector<Point> h;
    for (int i = 0; i < n; i++) {
        Point p(i + 1, 1LL * (i + 1) * b[i]); // (x,y)==(k,b)
        while (h.size() > 1 && cross(h.back() - h.end()[-2], p - h.back()) >= 0) {
            h.pop_back();
        }
        h.push_back(p);
    }
    
    for (int i = 0; i < m; i++) {
        int c;
        std::cin >> c;
        
        Point p(c, 1);
        int lo = 0, hi = h.size() - 1;
        while (lo < hi) {
            int m = (lo + hi) / 2;
            if (dot(h[m], p) < dot(h[m + 1], p)) {
                lo = m + 1;
            } else {
                hi = m;
            }
        }
        
        i64 ans = dot(h[lo], p);
        std::cout << ans << " \n"[i == m - 1];
    }
    
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小衣同学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值