“最大子段和”

问题:数组a,长度为s,“子段”定义为其中连续的若干个元素,求最大的子段和。(空子段的和定义为0

思路:设想正在检查第 i 个元素,已发现的最大和为m,最新选中的子段其和为 t 。

当t <= 0时,若a[i]为正,前面所选子段之和还不如仅选 a[i] 大;若a[i] < 0,反正已经是负数了(还不如选空子段),另选a[i]为新子段也不会更差。

当t > 0时,可以加上 a[i]:增大的话可能是更好的结果,减小也不会拖累 m。

#include <cassert>
#include <iostream>
using namespace std;

int max_sub_seq_sum(int const a[], int const S)
{
  int m = 0; // [begin, end)

  for(int i = 0, t = 0; i < S; ++i){
    if(t <= 0){
      t = a[i];
    }
    else{
      t += a[i];
    }

    if(t > m){
      m = t;
    }
  }

  return m;
}

int main()
{
  { int a[] = {}; assert(max_sub_seq_sum(a, sizeof(a)/sizeof(a[0])) == 0); }
  { int a[] = {0}; assert(max_sub_seq_sum(a, sizeof(a)/sizeof(a[0])) == 0); }
  { int a[] = {1}; assert(max_sub_seq_sum(a, sizeof(a)/sizeof(a[0])) == 1); }
  { int a[] = {1, 2}; assert(max_sub_seq_sum(a, sizeof(a)/sizeof(a[0])) == 3); }
  { int a[] = {1, 0, 2}; assert(max_sub_seq_sum(a, sizeof(a)/sizeof(a[0])) == 3); }
  { int a[] = {-1}; assert(max_sub_seq_sum(a, sizeof(a)/sizeof(a[0])) == 0); }
  { int a[] = {-1, 0}; assert(max_sub_seq_sum(a, sizeof(a)/sizeof(a[0])) == 0); }
  { int a[] = {-1, 1}; assert(max_sub_seq_sum(a, sizeof(a)/sizeof(a[0])) == 1); }
  { int a[] = {-1, 0, 1}; assert(max_sub_seq_sum(a, sizeof(a)/sizeof(a[0])) == 1); }
  { int a[] = {-1, 0, 1, 1, -1}; assert(max_sub_seq_sum(a, sizeof(a)/sizeof(a[0])) == 2); }
  { int a[] = {-1, 0, 1, 1, -1, 0, 1}; assert(max_sub_seq_sum(a, sizeof(a)/sizeof(a[0])) == 2); }
  { int a[] = {1, -1, -1, 1}; assert(max_sub_seq_sum(a, sizeof(a)/sizeof(a[0])) == 1); }
  { int a[] = {1, -1, -1, 1}; assert(max_sub_seq_sum(a, sizeof(a)/sizeof(a[0])) == 1); }
  { int a[] = {1, -1, -1, 1, 1, -2}; assert(max_sub_seq_sum(a, sizeof(a)/sizeof(a[0])) == 2); }
  { int a[] = {1, 0, 0, 1, -1, 1}; assert(max_sub_seq_sum(a, sizeof(a)/sizeof(a[0])) == 2); }
  { int a[] = { 7, 6, 5, 4, 3, 2, 1, 0}; assert(max_sub_seq_sum(a, sizeof(a)/sizeof(a[0])) == 28); }
}


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值