问题:数组a,长度为s,“子段”定义为其中连续的若干个元素,求最大的子段和。(空子段的和定义为0)
思路:设想正在检查第 i 个元素,已发现的最大和为m,最新选中的子段其和为 t 。
当t <= 0时,若a[i]为正,前面所选子段之和还不如仅选 a[i] 大;若a[i] < 0,反正已经是负数了(还不如选空子段),另选a[i]为新子段也不会更差。
当t > 0时,可以加上 a[i]:增大的话可能是更好的结果,减小也不会拖累 m。
#include <cassert>
#include <iostream>
using namespace std;
int max_sub_seq_sum(int const a[], int const S)
{
int m = 0; // [begin, end)
for(int i = 0, t = 0; i < S; ++i){
if(t <= 0){
t = a[i];
}
else{
t += a[i];
}
if(t > m){
m = t;
}
}
return m;
}
int main()
{
{ int a[] = {}; assert(max_sub_seq_sum(a, sizeof(a)/sizeof(a[0])) == 0); }
{ int a[] = {0}; assert(max_sub_seq_sum(a, sizeof(a)/sizeof(a[0])) == 0); }
{ int a[] = {1}; assert(max_sub_seq_sum(a, sizeof(a)/sizeof(a[0])) == 1); }
{ int a[] = {1, 2}; assert(max_sub_seq_sum(a, sizeof(a)/sizeof(a[0])) == 3); }
{ int a[] = {1, 0, 2}; assert(max_sub_seq_sum(a, sizeof(a)/sizeof(a[0])) == 3); }
{ int a[] = {-1}; assert(max_sub_seq_sum(a, sizeof(a)/sizeof(a[0])) == 0); }
{ int a[] = {-1, 0}; assert(max_sub_seq_sum(a, sizeof(a)/sizeof(a[0])) == 0); }
{ int a[] = {-1, 1}; assert(max_sub_seq_sum(a, sizeof(a)/sizeof(a[0])) == 1); }
{ int a[] = {-1, 0, 1}; assert(max_sub_seq_sum(a, sizeof(a)/sizeof(a[0])) == 1); }
{ int a[] = {-1, 0, 1, 1, -1}; assert(max_sub_seq_sum(a, sizeof(a)/sizeof(a[0])) == 2); }
{ int a[] = {-1, 0, 1, 1, -1, 0, 1}; assert(max_sub_seq_sum(a, sizeof(a)/sizeof(a[0])) == 2); }
{ int a[] = {1, -1, -1, 1}; assert(max_sub_seq_sum(a, sizeof(a)/sizeof(a[0])) == 1); }
{ int a[] = {1, -1, -1, 1}; assert(max_sub_seq_sum(a, sizeof(a)/sizeof(a[0])) == 1); }
{ int a[] = {1, -1, -1, 1, 1, -2}; assert(max_sub_seq_sum(a, sizeof(a)/sizeof(a[0])) == 2); }
{ int a[] = {1, 0, 0, 1, -1, 1}; assert(max_sub_seq_sum(a, sizeof(a)/sizeof(a[0])) == 2); }
{ int a[] = { 7, 6, 5, 4, 3, 2, 1, 0}; assert(max_sub_seq_sum(a, sizeof(a)/sizeof(a[0])) == 28); }
}