基于遗传算法的三相单目标配电网重构优化

128 篇文章 ¥59.90 ¥99.00
本文提出了一种基于遗传算法的三相单目标配电网重构优化方法,通过建立多变量优化问题,利用遗传算法求解,以实现低成本、高效率的配电网重构。在MATLAB环境中进行了算法实现并验证了有效性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基于遗传算法的三相单目标配电网重构优化

配电网是城市中不可或缺的能源分配系统,为保障用电质量和安全稳定运行,需要对其进行周期性维护和优化。本文提出了一种基于遗传算法的三相单目标配电网重构优化方法,旨在实现低成本、高效率的配电网重构。

首先,本文对遗传算法进行简要介绍,并结合实际问题说明其应用。其次,我们针对三相单目标配电网进行建模,将其转化为一个多变量优化问题。接着,利用遗传算法求解优化问题,得到最优解,实现配电网重构。最后,我们使用MATLAB对所涉及算法进行实现,并通过仿真结果验证优化算法的有效性。

以下是我们所编写的MATLAB代码:

% 遗传算法初始化
popsize=50; %种群规模
maxgen=100; %进化代数
pc=0.8; %交叉概率
pm=0.1; %变异概率
chromlength=100; %染色体长度
Lbound=-1.2; %变量下限
Ubound=1.2; %变量上限
ObjFun=@(x) -sin(x); %目标函数

% 初始化种群
Population=rand(popsize,chromlength).*(Ubound-Lbound)+Lbound;

% 开始进化
for i=1:maxgen
% 选择操作
Fit

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值