图像特征提取算法的MATLAB仿真

128 篇文章 22 订阅 ¥59.90 ¥99.00
本文介绍了在计算机视觉领域常用的图像特征提取算法——LBP、LDP和LPQ,并提供了MATLAB实现的示例代码。通过这些算法,可以从图像中提取有意义的信息,用于纹理分类、人脸识别、物体检测等任务,提高算法的鲁棒性和性能。
摘要由CSDN通过智能技术生成

图像特征提取算法的MATLAB仿真

在计算机视觉和图像处理领域,图像特征提取是一项重要的任务,它用于从图像中提取有意义的信息,以便进行分类、识别和检索等应用。在本文中,我们将介绍三种常用的图像特征提取算法:局部二值模式(Local Binary Patterns,LBP)、局部方向模式(Local Directional Patterns,LDP)和局部相位量化(Local Phase Quantization,LPQ)。我们将通过MATLAB仿真来实现这些算法,并展示它们在图像特征提取中的应用。

  1. 局部二值模式(LBP)

局部二值模式是一种简单而有效的图像纹理特征描述符。它通过比较像素与其邻域像素的灰度值来构建特征向量。下面是MATLAB中计算LBP特征的示例代码:

function lbpFeature = computeLBP(image)
    
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值