使用Shapiro-Wilk检验评估残差是否服从正态分布(R语言)

110 篇文章 ¥59.90 ¥99.00
本文介绍了如何使用R语言的Shapiro-Wilk检验来检查残差是否服从正态分布。详细阐述了检验原理,并提供了一个R代码示例,强调了在解释结果时需结合其他方法和图形检验。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

使用Shapiro-Wilk检验评估残差是否服从正态分布(R语言)

在统计分析中,正态分布(也称为高斯分布)是常见的概率分布之一,许多统计方法都基于数据服从正态分布的假设。然而,在实际应用中,我们经常需要验证数据是否符合正态分布。在R语言中,我们可以使用Shapiro-Wilk检验来评估残差是否服从正态分布。

Shapiro-Wilk检验是一种常用的正态性检验方法,它基于样本数据的排序值与理论正态分布的期望值之间的比较。在该检验中,零假设(H0)是残差来自于正态分布,备择假设(H1)是残差不来自于正态分布。如果p值小于预先设定的显著性水平(通常为0.05),则我们拒绝零假设,认为残差不服从正态分布。

下面是使用Shapiro-Wilk检验检验残差分布是否符合正态分布的R代码示例:

# 生成一组随机残差数据(示例数据)
residuals <- rnorm(100)

# 进行Shapiro-Wilk检验
shapiro.test(residuals)

在上述代码中,我们首先生成了一组示例的随机残差数据,可以根据实际情况替换为您自己的残差数据。然后,我们使用shapiro.test()函数对残差数据进行Shapiro-

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值