基于FPGA的双目相机目标深度图像提取实现 - 详细解析与 Matlab 源代码

139 篇文章 ¥59.90 ¥99.00
本文详细解析了如何利用FPGA和双目相机实现目标深度图像提取,主要介绍了SGBM算法流程,包括图像预处理、特征提取、视差计算、后处理和深度图像生成,并提供了简化版Matlab源代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基于FPGA的双目相机目标深度图像提取实现 - 详细解析与 Matlab 源代码

引言:
在计算机视觉领域,双目视觉系统广泛应用于深度感知和目标跟踪等任务。本文将详细介绍如何利用基于FPGA的双目相机实现目标深度图像的提取,并附上相应的 Matlab 源代码。

  1. 概述
    双目相机系统由两个相机组成,模拟人眼的视觉原理,通过测量两个视点之间的视差,可以计算目标物体的深度信息。FPGA作为一种可编程逻辑器件,具有并行计算能力和低延迟特性,非常适合用于实时图像处理任务,包括双目视觉系统。

  2. 硬件配置
    首先,我们需要准备双目相机系统和相应的硬件设备。确保相机能够同时捕获两个视角的图像,并将图像传输到FPGA进行处理。在本文中,我们将使用Matlab和Simulink进行算法开发和FPGA编程。

  3. 算法流程
    本文将采用经典的双目视觉算法SGBM(Semi-Global Matching)来实现目标深度图像的提取。SGBM算法包括以下几个步骤:

步骤 1: 图像预处理
首先,对双目图像进行预处理,包括图像去噪、颜色校正和图像对齐等操作。这些预处理步骤旨在提高后续视差计算的准确性和稳定性。

步骤 2: 特征提取
利用图像特征来计算视差信息。在这里,我们将使用SIFT(Scale-Invar

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值