基于FPGA的双目相机目标深度图像提取实现 - 详细解析与 Matlab 源代码
引言:
在计算机视觉领域,双目视觉系统广泛应用于深度感知和目标跟踪等任务。本文将详细介绍如何利用基于FPGA的双目相机实现目标深度图像的提取,并附上相应的 Matlab 源代码。
-
概述
双目相机系统由两个相机组成,模拟人眼的视觉原理,通过测量两个视点之间的视差,可以计算目标物体的深度信息。FPGA作为一种可编程逻辑器件,具有并行计算能力和低延迟特性,非常适合用于实时图像处理任务,包括双目视觉系统。 -
硬件配置
首先,我们需要准备双目相机系统和相应的硬件设备。确保相机能够同时捕获两个视角的图像,并将图像传输到FPGA进行处理。在本文中,我们将使用Matlab和Simulink进行算法开发和FPGA编程。 -
算法流程
本文将采用经典的双目视觉算法SGBM(Semi-Global Matching)来实现目标深度图像的提取。SGBM算法包括以下几个步骤:
步骤 1: 图像预处理
首先,对双目图像进行预处理,包括图像去噪、颜色校正和图像对齐等操作。这些预处理步骤旨在提高后续视差计算的准确性和稳定性。
步骤 2: 特征提取
利用图像特征来计算视差信息。在这里,我们将使用SIFT(Scale-Invar