基于模拟退火算法求解中国地图旅行商问题的Matlab源码

139 篇文章 ¥59.90 ¥99.00
本文介绍了如何利用模拟退火算法解决旅行商问题,特别是针对中国地图的情况。提供了Matlab源码实现,包括城市坐标数据处理、距离矩阵计算、算法参数设置以及路径优化过程。注意,实际应用时需要根据具体问题调整城市坐标数据。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

旅行商问题(Traveling Salesman Problem,TSP)是一个经典的组合优化问题,其目标是寻找一条路径,使得旅行商能够在访问一系列城市后回到起始城市,同时使得路径总长度最短。在这篇文章中,我们将使用模拟退火算法来解决实际中国地图的旅行商问题,并提供相应的Matlab源码。

模拟退火算法是一种全局优化算法,通过模拟金属材料冷却过程中的原子运动,以一定的概率接受劣解并逐渐收敛到全局最优解。下面是使用Matlab实现模拟退火算法求解中国地图旅行商问题的源码:

% 中国城市坐标数据(示例数据)
cities = [...
    39.93, 116.40; % 北京
    
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值