R语言中的分类混淆矩阵与confusionMatrix函数
分类混淆矩阵是评估分类模型性能的一种常用工具,它可以展示模型在不同类别上的预测结果与实际结果之间的差异。在R语言中,可以使用caret
包中的confusionMatrix
函数来生成分类混淆矩阵。
首先,确保已经安装了caret
包。如果尚未安装,可以使用以下代码进行安装:
install.packages("caret")
安装完成后,可以加载caret
包并使用confusionMatrix
函数来生成分类混淆矩阵。下面是一个示例:
# 导入caret包
library(caret)
# 创建实际分类结果和预测分类结果
actual <- c("cat", "dog", "cat", "dog", "dog")
predicted <- c("cat", "dog", "cat", "cat", "dog")
# 使用confusionMatrix函数生成分类混淆矩阵
cm <- confusionMatrix(actual, predicted)
# 打印分类混淆