R语言中的分类混淆矩阵与confusionMatrix函数

90 篇文章 ¥59.90 ¥99.00
本文介绍了R语言中用于评估分类模型性能的confusionMatrix函数,包括安装、使用示例以及如何通过该函数获取准确率、召回率、精确率和F1值等关键指标。通过示例代码展示了如何利用这些指标评估模型的分类效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

R语言中的分类混淆矩阵与confusionMatrix函数

分类混淆矩阵是评估分类模型性能的一种常用工具,它可以展示模型在不同类别上的预测结果与实际结果之间的差异。在R语言中,可以使用caret包中的confusionMatrix函数来生成分类混淆矩阵。

首先,确保已经安装了caret包。如果尚未安装,可以使用以下代码进行安装:

install.packages("caret")

安装完成后,可以加载caret包并使用confusionMatrix函数来生成分类混淆矩阵。下面是一个示例:

# 导入caret包
library(caret)

# 创建实际分类结果和预测分类结果
actual <- c("cat", "dog", "cat", "dog", "dog")
predicted <- c("cat", "dog", "cat", "cat", "dog")

# 使用confusionMatrix函数生成分类混淆矩阵
cm <- confusionMatrix(actual, predicted)

# 打印分类混淆
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值