SPSS探索性因素分析(Exploratory Factor Analysis)与验证性因素分析(Confirmatory Factor Analysis)的区

413 篇文章 ¥29.90 ¥99.00
本文介绍了SPSS中的探索性因素分析(EFA)和验证性因素分析(CFA)的区别,EFA是无先验假设的数据降维技术,而CFA基于理论模型验证潜在结构。文章详细阐述了EFA和CFA的步骤,并提供了SPSS编程实现的示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

SPSS探索性因素分析(Exploratory Factor Analysis)与验证性因素分析(Confirmatory Factor Analysis)的区别与编程实现

简介:
因素分析是一种常用的统计方法,用于研究观测变量之间的潜在结构和因素。其通过将多个观测变量转化为较少的无关因子来简化数据分析,并揭示数据中的潜在模式。SPSS软件提供了探索性因素分析和验证性因素分析的功能,本文将介绍它们的区别,并提供相应的编程实现。

一、探索性因素分析(EFA)
探索性因素分析是一种无先验假设的数据降维技术,用于确定少数几个无关因子(即潜在结构),以解释观测变量之间的变异性。它通过考察因子载荷(factor loading)和公共因子方差来识别模式,并生成因子解释变量的新集合。

EFA的步骤如下:

  1. 准备数据:将需要进行因素分析的观测变量导入SPSS软件中。
  2. 提取因子:选择合适的提取因子方法(如主成分分析、最大似然法),并确定提取的因子数量。
  3. 旋转因子:对提取的因子进行旋转(如方差最大旋转、极简结构旋转),以获得更容易解释的结果。
  4. 解释因子:根据因子载荷和公共因子方差,解释每个因子的含义。
  5. 验证结果&#x
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值